On the multidimensional boundary analogue of the Morera theorem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 29-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss functions with the one-dimensional holomorphic extension property along complex lines and curves and also boundary multidimensional variants of the Morera theorem. We show how integral representations can be applied to the study of analytic continuation of functions, in particular to multidimensional boundary analogues of the Morera theorems.
Keywords: one-dimensional holomorphic extension property, multidimensional variants of the Morera theorem.
@article{JSFU_2022_15_1_a4,
     author = {Simona G. Myslivets},
     title = {On the multidimensional boundary analogue of the {Morera} theorem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {29--45},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a4/}
}
TY  - JOUR
AU  - Simona G. Myslivets
TI  - On the multidimensional boundary analogue of the Morera theorem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 29
EP  - 45
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a4/
LA  - en
ID  - JSFU_2022_15_1_a4
ER  - 
%0 Journal Article
%A Simona G. Myslivets
%T On the multidimensional boundary analogue of the Morera theorem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 29-45
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a4/
%G en
%F JSFU_2022_15_1_a4
Simona G. Myslivets. On the multidimensional boundary analogue of the Morera theorem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a4/

[1] L.A. Aizenberg, A.P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, AMS, Providence, RI, 1983 | MR | Zbl

[2] G.M. Henkin, “The method of integral representations in complex analysis”, Several Complex Variables I, Encyclopaedia of Mathematical Sciences, 7, Springer-Verlag, 1990, 19–116 | DOI | MR

[3] S.G. Krantz, Function theory of several complex variables, second edition, Wadsworth $\$ Brooks/Cole, Pacific Grove, CA, 1992 | MR | Zbl

[4] A.M. Kytmanov, The Bochner-Martilelli integral and its applications, Birkhäuser Verlag, Basel, 1995 | MR

[5] R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New-York–Heidelberg–Berlin, 1986 | MR | Zbl

[6] W. Rudin, Function theory in the unit ball of $\mathbb{C}^n$, Springer-Verlag, New-York–Heidelberg–Berlin, 1980 | MR

[7] B.V. Shabat, Introduction to complex analysis, v. 2, Functions of several complex variables, AMS, Providence, RI, 1992 | MR | Zbl

[8] V.S. Vladimirov, Methods of the theory of functions of many complex variables, MIT Press, Cambridge, MA, 1966 | MR

[9] S. Bochner, “Analytic and meromorphic continuation by means of Green's formula”, Ann. of Math., 44 (1943), 652–673 | DOI | MR | Zbl

[10] W. Koppelman, “The Cauchy integral for differential forms”, Bull. Amer. Math. Soc., 73 (1967), 554–556 | DOI | MR | Zbl

[11] E. Martinelli, “Alcuni teoremi integrali per le funzioni analitiche di più variabili complesse”, Mem. R. Accad. Ital., 9 (1938), 269–283

[12] C.H. Look, T.D. Zhong, “An extension of Privalof's theorem”, Acta Math. Sin., 7:1 (1987), 144–165 | MR

[13] Sh.A. Dautov, A.M. Kytmanov, “The boundary values of an integral of Martinelli-Bochner type”, Properties of holomorphic functions of several complex variables, Inst. Fyz. SO AN SSSR, Krasnoyarsk, 1973, 49–54 (in Russian) | MR

[14] F.R. Harvey, H.B. Lowson, “On boundaries of complex analytic varieties”, Ann. of Math., 102:2 (1975), 223–290 | DOI | MR | Zbl

[15] A.M. Kytmanov, “Holomorphic extension of integrable CR-functions from part of the boundary of the domain”, Math. Notes, 48:2 (1990), 761–765 | DOI | MR | Zbl

[16] A.M. Kytmanov, “Holomorphic extension of $CR$ functions with singularities of hypersurface”, Math. USSR Izv., 37:3 (1991), 681–691 | DOI | MR

[17] A.M. Kytmanov, M. Sh.Yakimenko, “On holomorphic extension of hyperfunctions”, Sib. Math. J., 34:6 (1993), 1101–1109 | DOI | MR | Zbl

[18] J. Globevnik, E.L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl

[19] D. Govekar, “Morera conditions along real planes and a characterization of $CR$ functions on boundaries of domains in $\mathbb C^n$”, Math. Z., 216 (1994), 195–207 | DOI | MR | Zbl

[20] E.L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR

[21] M.L. Agranovskii, A.M. Semenov, “Boundary analogues of Hartog's theorem”, Sib. Math. J., 32:1 (1991), 137–139 | DOI | MR

[22] A.M. Kytmanov, S.G. Myslivets, “On a certain boundary analog of Morera's theorem”, Sib. Math. J., 36:6 (1995), 1171–1174 | DOI | MR | Zbl

[23] A.M. Kytmanov, S.G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR | Zbl

[24] A.M. Kytmanov, S.G. Myslivets, “On holomorphy of functions representable by the logarithmic residue formula”, Sib. Math. J., 38:2 (1997), 302–311 | DOI | MR | Zbl

[25] A. Nagel, W. Rudin, “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43 (1976), 841–865 | MR | Zbl

[26] A.M. Kytmanov, S. Kosbergenov, S.G. Myslivets, “On the boundary Morera theorem for classical domains”, Sib. Math. J., 40:3 (1999), 595–604 | DOI | MR | Zbl

[27] A.M. Kytmanov, S.G. Myslivets, “On Family of Complex Straight Lines Sufficient for Existence of Holomorphic Continuation of Continuous Functions on Boundary of Domain”, Ufa Math. Journ., 12:3 (2020), 44–49 | DOI | MR | Zbl

[28] A.M. Kytmanov, S.G. Myslivets, “On families of complex lines sufficient for holomorphic extension”, Math. Notes, 83:3–4 (2008), 500–505 | DOI | MR | Zbl

[29] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Amer. J. of Math., 134:6 (2012), 1473–1490 | DOI | MR | Zbl

[30] A.M. Kytmanov, S.G. Myslivets, “On the Families of Complex Lines which are Sufficient for Holomorphic Continuation of Functions Given on the Boundary of the Domain”, Journal of Siberian Federal University. Mathematics $\$ Physics, 5:2 (2012), 213–222 (in Russian) | MR | Zbl

[31] M.L. Agranovskii, R.E. Val'skii, “Maximality of invariant algebras of functions”, Sib. Math. J., 12:1 (1971), 1–7 | DOI | MR

[32] M. Agranovsky, “Propagation of boundary $CR$-foliations and Morera type theorems for manifolds with attached analytic discs”, Advances in Math., 211:1 (2007), 284–326 | DOI | MR | Zbl

[33] A.M. Semenov, “Holomorphic extension from spheres in $\mathbb C^n$”, Sib. Math. J., 30:3 (1989), 445–450 | DOI | MR | Zbl

[34] J. Globevnik, “On holomorphic extension from spheres in $\mathbb C^2$”, Proc. Roy. Soc. Edinburgh. Sect. A, 94 (1983), 113–120 | DOI | MR | Zbl

[35] J. Globevnik, “A family of lines for testing holomorphy in the ball of $\mathbb C^2$”, Indiana Univ. Math., 36 (1987), 639–644 | DOI | MR | Zbl

[36] E. Grinberg, “A boundary analogue of Morera's theorem in the unit ball of $\mathbb C^n$”, Proc. Amer. Math. Soc., 102 (1988), 114–116 | MR | Zbl

[37] M. Agranovsky, “Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \(\mathbb{C}^n\)”, Journal d'Analyse Math\(\acute{e}\)matique, 113:1 (2011), 293–304 | DOI | MR | Zbl

[38] L. Baracco, “Holomorphic extension from the sphere to the ball”, Math. Analysis and Appl., 388:2 (2012), 760–762 | DOI | MR | Zbl

[39] L. Baracco, “Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball”, Amer. J. of Math., 135:2 (2013), 493–497 | DOI | MR | Zbl

[40] J. Globevnik, “Meromorphic extensions from small families of circles and holomorphic extensions from spheres”, Trans. Amer. Math. Soc., 364:11 (2012), 5857–5880 | DOI | MR | Zbl

[41] A.M. Kytmanov, S.G. Myslivets, “An Analog of the Hartogs Theorem in a Ball of $\mathbb C^n$”, Math. Nachr., 288:2–3 (2015), 224–234 | DOI | MR | Zbl

[42] A.M. Kytmanov, S.G. Myslivets, “On the Functions with One-Dimensional Hplomorphic Extension Property in Circular Domains”, Math. Nachr., 292:6 (2019), 1321–1332 | DOI | MR | Zbl

[43] A.M. Kytmanov, S.G. Myslivets, “On Functions with the Boundary Morera Property in Domains with the Piecewise-Smooth Boundary”, Vest. Udmur. Univer. Matem. Mekhan. Komp'ut. Nauki, 31:1 (2021), 1–9 | DOI | MR

[44] Nagel A., Rudin W., “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43 (1976), 841–865 | MR | Zbl