Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_1_a4, author = {Simona G. Myslivets}, title = {On the multidimensional boundary analogue of the {Morera} theorem}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {29--45}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a4/} }
TY - JOUR AU - Simona G. Myslivets TI - On the multidimensional boundary analogue of the Morera theorem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 29 EP - 45 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a4/ LA - en ID - JSFU_2022_15_1_a4 ER -
Simona G. Myslivets. On the multidimensional boundary analogue of the Morera theorem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a4/
[1] L.A. Aizenberg, A.P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, AMS, Providence, RI, 1983 | MR | Zbl
[2] G.M. Henkin, “The method of integral representations in complex analysis”, Several Complex Variables I, Encyclopaedia of Mathematical Sciences, 7, Springer-Verlag, 1990, 19–116 | DOI | MR
[3] S.G. Krantz, Function theory of several complex variables, second edition, Wadsworth $\$ Brooks/Cole, Pacific Grove, CA, 1992 | MR | Zbl
[4] A.M. Kytmanov, The Bochner-Martilelli integral and its applications, Birkhäuser Verlag, Basel, 1995 | MR
[5] R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New-York–Heidelberg–Berlin, 1986 | MR | Zbl
[6] W. Rudin, Function theory in the unit ball of $\mathbb{C}^n$, Springer-Verlag, New-York–Heidelberg–Berlin, 1980 | MR
[7] B.V. Shabat, Introduction to complex analysis, v. 2, Functions of several complex variables, AMS, Providence, RI, 1992 | MR | Zbl
[8] V.S. Vladimirov, Methods of the theory of functions of many complex variables, MIT Press, Cambridge, MA, 1966 | MR
[9] S. Bochner, “Analytic and meromorphic continuation by means of Green's formula”, Ann. of Math., 44 (1943), 652–673 | DOI | MR | Zbl
[10] W. Koppelman, “The Cauchy integral for differential forms”, Bull. Amer. Math. Soc., 73 (1967), 554–556 | DOI | MR | Zbl
[11] E. Martinelli, “Alcuni teoremi integrali per le funzioni analitiche di più variabili complesse”, Mem. R. Accad. Ital., 9 (1938), 269–283
[12] C.H. Look, T.D. Zhong, “An extension of Privalof's theorem”, Acta Math. Sin., 7:1 (1987), 144–165 | MR
[13] Sh.A. Dautov, A.M. Kytmanov, “The boundary values of an integral of Martinelli-Bochner type”, Properties of holomorphic functions of several complex variables, Inst. Fyz. SO AN SSSR, Krasnoyarsk, 1973, 49–54 (in Russian) | MR
[14] F.R. Harvey, H.B. Lowson, “On boundaries of complex analytic varieties”, Ann. of Math., 102:2 (1975), 223–290 | DOI | MR | Zbl
[15] A.M. Kytmanov, “Holomorphic extension of integrable CR-functions from part of the boundary of the domain”, Math. Notes, 48:2 (1990), 761–765 | DOI | MR | Zbl
[16] A.M. Kytmanov, “Holomorphic extension of $CR$ functions with singularities of hypersurface”, Math. USSR Izv., 37:3 (1991), 681–691 | DOI | MR
[17] A.M. Kytmanov, M. Sh.Yakimenko, “On holomorphic extension of hyperfunctions”, Sib. Math. J., 34:6 (1993), 1101–1109 | DOI | MR | Zbl
[18] J. Globevnik, E.L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl
[19] D. Govekar, “Morera conditions along real planes and a characterization of $CR$ functions on boundaries of domains in $\mathbb C^n$”, Math. Z., 216 (1994), 195–207 | DOI | MR | Zbl
[20] E.L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR
[21] M.L. Agranovskii, A.M. Semenov, “Boundary analogues of Hartog's theorem”, Sib. Math. J., 32:1 (1991), 137–139 | DOI | MR
[22] A.M. Kytmanov, S.G. Myslivets, “On a certain boundary analog of Morera's theorem”, Sib. Math. J., 36:6 (1995), 1171–1174 | DOI | MR | Zbl
[23] A.M. Kytmanov, S.G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR | Zbl
[24] A.M. Kytmanov, S.G. Myslivets, “On holomorphy of functions representable by the logarithmic residue formula”, Sib. Math. J., 38:2 (1997), 302–311 | DOI | MR | Zbl
[25] A. Nagel, W. Rudin, “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43 (1976), 841–865 | MR | Zbl
[26] A.M. Kytmanov, S. Kosbergenov, S.G. Myslivets, “On the boundary Morera theorem for classical domains”, Sib. Math. J., 40:3 (1999), 595–604 | DOI | MR | Zbl
[27] A.M. Kytmanov, S.G. Myslivets, “On Family of Complex Straight Lines Sufficient for Existence of Holomorphic Continuation of Continuous Functions on Boundary of Domain”, Ufa Math. Journ., 12:3 (2020), 44–49 | DOI | MR | Zbl
[28] A.M. Kytmanov, S.G. Myslivets, “On families of complex lines sufficient for holomorphic extension”, Math. Notes, 83:3–4 (2008), 500–505 | DOI | MR | Zbl
[29] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Amer. J. of Math., 134:6 (2012), 1473–1490 | DOI | MR | Zbl
[30] A.M. Kytmanov, S.G. Myslivets, “On the Families of Complex Lines which are Sufficient for Holomorphic Continuation of Functions Given on the Boundary of the Domain”, Journal of Siberian Federal University. Mathematics $\$ Physics, 5:2 (2012), 213–222 (in Russian) | MR | Zbl
[31] M.L. Agranovskii, R.E. Val'skii, “Maximality of invariant algebras of functions”, Sib. Math. J., 12:1 (1971), 1–7 | DOI | MR
[32] M. Agranovsky, “Propagation of boundary $CR$-foliations and Morera type theorems for manifolds with attached analytic discs”, Advances in Math., 211:1 (2007), 284–326 | DOI | MR | Zbl
[33] A.M. Semenov, “Holomorphic extension from spheres in $\mathbb C^n$”, Sib. Math. J., 30:3 (1989), 445–450 | DOI | MR | Zbl
[34] J. Globevnik, “On holomorphic extension from spheres in $\mathbb C^2$”, Proc. Roy. Soc. Edinburgh. Sect. A, 94 (1983), 113–120 | DOI | MR | Zbl
[35] J. Globevnik, “A family of lines for testing holomorphy in the ball of $\mathbb C^2$”, Indiana Univ. Math., 36 (1987), 639–644 | DOI | MR | Zbl
[36] E. Grinberg, “A boundary analogue of Morera's theorem in the unit ball of $\mathbb C^n$”, Proc. Amer. Math. Soc., 102 (1988), 114–116 | MR | Zbl
[37] M. Agranovsky, “Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \(\mathbb{C}^n\)”, Journal d'Analyse Math\(\acute{e}\)matique, 113:1 (2011), 293–304 | DOI | MR | Zbl
[38] L. Baracco, “Holomorphic extension from the sphere to the ball”, Math. Analysis and Appl., 388:2 (2012), 760–762 | DOI | MR | Zbl
[39] L. Baracco, “Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball”, Amer. J. of Math., 135:2 (2013), 493–497 | DOI | MR | Zbl
[40] J. Globevnik, “Meromorphic extensions from small families of circles and holomorphic extensions from spheres”, Trans. Amer. Math. Soc., 364:11 (2012), 5857–5880 | DOI | MR | Zbl
[41] A.M. Kytmanov, S.G. Myslivets, “An Analog of the Hartogs Theorem in a Ball of $\mathbb C^n$”, Math. Nachr., 288:2–3 (2015), 224–234 | DOI | MR | Zbl
[42] A.M. Kytmanov, S.G. Myslivets, “On the Functions with One-Dimensional Hplomorphic Extension Property in Circular Domains”, Math. Nachr., 292:6 (2019), 1321–1332 | DOI | MR | Zbl
[43] A.M. Kytmanov, S.G. Myslivets, “On Functions with the Boundary Morera Property in Domains with the Piecewise-Smooth Boundary”, Vest. Udmur. Univer. Matem. Mekhan. Komp'ut. Nauki, 31:1 (2021), 1–9 | DOI | MR
[44] Nagel A., Rudin W., “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43 (1976), 841–865 | MR | Zbl