Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_1_a12, author = {Vladimir V. Rybakov}, title = {Multi-agents' temporal logic using operations of static agents' knowledge}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {114--124}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/} }
TY - JOUR AU - Vladimir V. Rybakov TI - Multi-agents' temporal logic using operations of static agents' knowledge JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 114 EP - 124 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/ LA - en ID - JSFU_2022_15_1_a12 ER -
%0 Journal Article %A Vladimir V. Rybakov %T Multi-agents' temporal logic using operations of static agents' knowledge %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 114-124 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/ %G en %F JSFU_2022_15_1_a12
Vladimir V. Rybakov. Multi-agents' temporal logic using operations of static agents' knowledge. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/
[1] F. Baader, P. Marantidis, A. Mottet, A. Okhotin, “Extensions of unificationmodulo ACUI”, Mathematical Structures in Computer Science, 30:6 (2019), 1–30 | DOI | MR
[2] F. Baader, P. Narendran, “Unification of concept terms”, Proceedings of the 11th International Workshop on Unification, UNIF-97, LIFO Technical Report, 2001, 97–98 | MR
[3] S. Babenyshev, V. Rybakov, “Linear Temporal Logic LTL: Basis for Admissible Rules”, J. Logic Computation, 21:2 (2011), 157–177 | DOI | MR | Zbl
[4] H. Friedman, “One Hundred and Two Problems in Mathematical Logic”, Journal of Symbolic Logic, 40:3 (1975), 113–130 | DOI | MR
[5] E. Jerabek, “Independent bases of admissible rules”, Logic Journal of the IGPL, 16:3 (2008), 249–267 | DOI | MR | Zbl
[6] E. Jerabek, “Bases of admissible rules of Lukasiewicz logic”, Journal of Logic and Computation, 20:6 (2010), 1149–1163 | DOI | MR | Zbl
[7] D.M. Gabbay, I.M. Hodkinson, “An axiomatization of the temporal logic with Until and Since over the real numbers”, Journal of Logic and Computation, 1 (1990), 229–260 | DOI | MR
[8] D.M. Gabbay, I.M. Hodkinson, M.A. Reynolds, Temporal Logic: Mathematical foundations and computational aspects, v. 1, Clarendon Press, Oxford, 1994 | MR | Zbl
[9] R. Goldblatt, “Logics of Time and Computations”, CSLI pubblications, Chapter 6, 2nd revised and expanded edition, 1992 | MR | Zbl
[10] V. Goranko, “Hierarchies of Modal and Temporal Logics with Reference Pointers”, Journal of Logic, Language and Information, 5:1 (1996), 1–24 | DOI | MR | Zbl
[11] S. Ghilardi, “Unification in Intuitionistic Logic”, J. of Symbolic Logic, 64:2 (1999), 859–880 | DOI | MR | Zbl
[12] S. Ghilardi, “Unification Through Projectivity”, J. of Logic and Computation, 7:6 (1997), 733–752 | DOI | MR | Zbl
[13] R. Iemhoff, “On the admissible rules of intuitionistic propositional logic”, Journal of Symbolic Logic, 66 (2001), 281–294 | DOI | MR | Zbl
[14] R. Iemhoff, G. Metcalfe, “Proof theory for admissible rules”, Annals of Pure and Applied Logic, 159:1–2 (2009), 171–186 | DOI | MR | Zbl
[15] S. Odintsov, V. Rybakov, “Inference Rules in Nelson's Logics, Admissibility and Weak Admissibility”, Logica Universalis, 9:1 (2015), 93–120 | DOI | MR | Zbl
[16] S. Odintsov, V. Rybakov, “Unification and admissible rules for paraconsistent minimal Johanssons' logic J and positive intuitionistic logic IPC+”, Annals of Pure and Applied Logic, 164:7–8 (2013), 771–784 | DOI | MR | Zbl
[17] V. Rybakov, “Refined common knowledge logics or logics of common information”, Archive for mathematical Logic, 42:2 (2003), 179–200 | DOI | MR | Zbl
[18] V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. of Symbolic Logic, 70:4 (2005), 1137–1149 | DOI | MR | Zbl
[19] V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Annals of Pure and Applied Logic, 155 (2008), 32–45 | DOI | MR | Zbl
[20] V.V. Rybakov, “Logic of knowledge and discovery via interacting agents - Decision algorithm for true and satisfiable statements”, Information Sciences, 179:11 (2009), 1608–1614 | DOI | MR | Zbl
[21] V.V. Rybakov, “Linear Temporal Logic $LTL_{K_n}$ extended by Multi-Agent Logic $K_n$ with Interacting Agents”, Journal of logic and Computation, 19:6 (2009), 989–1017 | DOI | MR | Zbl
[22] V. Rybakov, “Logical Analysis for Chance Discovery in Multi-Agents' Environment”, KES 2012, Conference Proceedings, Springer, 2012, 1593–1601
[23] V. Rybakov, “Writing out unifiers in linear temporal logic”, Journal of Logic and Computation, 22:5 (2012), 1199–1206 | DOI | MR | Zbl
[24] V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Logic and Computation, 26:3 (2016), 945–958 | DOI | MR | Zbl
[25] V.V. Rybakov, “Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms”, Siberian Mathematical Journal, 58:5 (2017), 875–886 | DOI | MR | Zbl
[26] V. Rybakov, “Multiagent temporal logics with multivaluations”, Siberian Mathematical Journal, 59:4 (2018), 710–720 | DOI | MR | Zbl
[27] V. Rybakov, “Linear Temporal Logic with Non-transitive Time, Algorithms for Decidability and Verification of Admissibility”, Outstanding Contributions to Logic, Springer, 2018, 219–243 | DOI | MR | Zbl
[28] V. Rybakov, “Temporal multi-valued logic with lost worlds in the past”, Sib. Elektron. Mat. Izv., 15 (2018), 436–449 | DOI | MR | Zbl
[29] V. Rybakov, “Branching time agents' logic, satisfiability problem by rules in reduced form”, Sib. Elektron. Mat. Izv., 16 (2019), 1158–1170 | DOI | MR | Zbl
[30] R. Schmidt, D. Tishkovsky, “Solving rule admissibility problem for S4 by a tableau method”, Proceeding, Automated Reasoning Workshop, 2011, 30–31
[31] R. Schmidt, D. Tishkovsky, S. Babenyshev, V. Rybakov, “A tableau method for checking rule admissibility in S4”, Electronic Notes in Theoretical Computer Science, 262 (2010), 17–32 | DOI | MR | Zbl
[32] J. van Benthem, “Tense logic and time”, Notre Dame J. Formal Logic, 25:1 (1984), 1–16 | MR | Zbl
[33] M.Y. Vardi, “An automata-theoretic approach to linear temporal logic”, Banff Higher Order Workshop, 1995, 238–266 http://citeseer.ist.psu.edu/vardi96automatatheoretic.html
[34] M.Y. Vardi, “Reasoning about the past with two-way automata”, ICALP, LNCS, 1443, eds. Larsen K. G., Skyum S., Winskel G., Springer, 1998, 628–641 | DOI | MR | Zbl
[35] Y. Venema, “Temporal Logic”, Blackwell Guide on Philosophical Logic, Chapter 10, ed. L. Goble, Blackwell Publishers, 2001, 203–223 | MR | Zbl