Multi-agents' temporal logic using operations of static agents' knowledge
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 114-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an agents' temporal logic with non-standard none-transitive temporal accessibility relations and operations of static agents' knowledge. The main mathematical problem we work with is existence of algorithms for solving satisfiability problem. The problem is resolved and the algorithm is found. Some open problems are suggested in the concluding part.
Keywords: temporal logic, multi-agency, non-classical logics, knowledge representation, deciding algorithms, decidability, computability.
Mots-clés : information
@article{JSFU_2022_15_1_a12,
     author = {Vladimir V. Rybakov},
     title = {Multi-agents' temporal logic using operations of static agents' knowledge},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {114--124},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/}
}
TY  - JOUR
AU  - Vladimir V. Rybakov
TI  - Multi-agents' temporal logic using operations of static agents' knowledge
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 114
EP  - 124
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/
LA  - en
ID  - JSFU_2022_15_1_a12
ER  - 
%0 Journal Article
%A Vladimir V. Rybakov
%T Multi-agents' temporal logic using operations of static agents' knowledge
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 114-124
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/
%G en
%F JSFU_2022_15_1_a12
Vladimir V. Rybakov. Multi-agents' temporal logic using operations of static agents' knowledge. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a12/

[1] F. Baader, P. Marantidis, A. Mottet, A. Okhotin, “Extensions of unificationmodulo ACUI”, Mathematical Structures in Computer Science, 30:6 (2019), 1–30 | DOI | MR

[2] F. Baader, P. Narendran, “Unification of concept terms”, Proceedings of the 11th International Workshop on Unification, UNIF-97, LIFO Technical Report, 2001, 97–98 | MR

[3] S. Babenyshev, V. Rybakov, “Linear Temporal Logic LTL: Basis for Admissible Rules”, J. Logic Computation, 21:2 (2011), 157–177 | DOI | MR | Zbl

[4] H. Friedman, “One Hundred and Two Problems in Mathematical Logic”, Journal of Symbolic Logic, 40:3 (1975), 113–130 | DOI | MR

[5] E. Jerabek, “Independent bases of admissible rules”, Logic Journal of the IGPL, 16:3 (2008), 249–267 | DOI | MR | Zbl

[6] E. Jerabek, “Bases of admissible rules of Lukasiewicz logic”, Journal of Logic and Computation, 20:6 (2010), 1149–1163 | DOI | MR | Zbl

[7] D.M. Gabbay, I.M. Hodkinson, “An axiomatization of the temporal logic with Until and Since over the real numbers”, Journal of Logic and Computation, 1 (1990), 229–260 | DOI | MR

[8] D.M. Gabbay, I.M. Hodkinson, M.A. Reynolds, Temporal Logic: Mathematical foundations and computational aspects, v. 1, Clarendon Press, Oxford, 1994 | MR | Zbl

[9] R. Goldblatt, “Logics of Time and Computations”, CSLI pubblications, Chapter 6, 2nd revised and expanded edition, 1992 | MR | Zbl

[10] V. Goranko, “Hierarchies of Modal and Temporal Logics with Reference Pointers”, Journal of Logic, Language and Information, 5:1 (1996), 1–24 | DOI | MR | Zbl

[11] S. Ghilardi, “Unification in Intuitionistic Logic”, J. of Symbolic Logic, 64:2 (1999), 859–880 | DOI | MR | Zbl

[12] S. Ghilardi, “Unification Through Projectivity”, J. of Logic and Computation, 7:6 (1997), 733–752 | DOI | MR | Zbl

[13] R. Iemhoff, “On the admissible rules of intuitionistic propositional logic”, Journal of Symbolic Logic, 66 (2001), 281–294 | DOI | MR | Zbl

[14] R. Iemhoff, G. Metcalfe, “Proof theory for admissible rules”, Annals of Pure and Applied Logic, 159:1–2 (2009), 171–186 | DOI | MR | Zbl

[15] S. Odintsov, V. Rybakov, “Inference Rules in Nelson's Logics, Admissibility and Weak Admissibility”, Logica Universalis, 9:1 (2015), 93–120 | DOI | MR | Zbl

[16] S. Odintsov, V. Rybakov, “Unification and admissible rules for paraconsistent minimal Johanssons' logic J and positive intuitionistic logic IPC+”, Annals of Pure and Applied Logic, 164:7–8 (2013), 771–784 | DOI | MR | Zbl

[17] V. Rybakov, “Refined common knowledge logics or logics of common information”, Archive for mathematical Logic, 42:2 (2003), 179–200 | DOI | MR | Zbl

[18] V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. of Symbolic Logic, 70:4 (2005), 1137–1149 | DOI | MR | Zbl

[19] V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Annals of Pure and Applied Logic, 155 (2008), 32–45 | DOI | MR | Zbl

[20] V.V. Rybakov, “Logic of knowledge and discovery via interacting agents - Decision algorithm for true and satisfiable statements”, Information Sciences, 179:11 (2009), 1608–1614 | DOI | MR | Zbl

[21] V.V. Rybakov, “Linear Temporal Logic $LTL_{K_n}$ extended by Multi-Agent Logic $K_n$ with Interacting Agents”, Journal of logic and Computation, 19:6 (2009), 989–1017 | DOI | MR | Zbl

[22] V. Rybakov, “Logical Analysis for Chance Discovery in Multi-Agents' Environment”, KES 2012, Conference Proceedings, Springer, 2012, 1593–1601

[23] V. Rybakov, “Writing out unifiers in linear temporal logic”, Journal of Logic and Computation, 22:5 (2012), 1199–1206 | DOI | MR | Zbl

[24] V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Logic and Computation, 26:3 (2016), 945–958 | DOI | MR | Zbl

[25] V.V. Rybakov, “Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms”, Siberian Mathematical Journal, 58:5 (2017), 875–886 | DOI | MR | Zbl

[26] V. Rybakov, “Multiagent temporal logics with multivaluations”, Siberian Mathematical Journal, 59:4 (2018), 710–720 | DOI | MR | Zbl

[27] V. Rybakov, “Linear Temporal Logic with Non-transitive Time, Algorithms for Decidability and Verification of Admissibility”, Outstanding Contributions to Logic, Springer, 2018, 219–243 | DOI | MR | Zbl

[28] V. Rybakov, “Temporal multi-valued logic with lost worlds in the past”, Sib. Elektron. Mat. Izv., 15 (2018), 436–449 | DOI | MR | Zbl

[29] V. Rybakov, “Branching time agents' logic, satisfiability problem by rules in reduced form”, Sib. Elektron. Mat. Izv., 16 (2019), 1158–1170 | DOI | MR | Zbl

[30] R. Schmidt, D. Tishkovsky, “Solving rule admissibility problem for S4 by a tableau method”, Proceeding, Automated Reasoning Workshop, 2011, 30–31

[31] R. Schmidt, D. Tishkovsky, S. Babenyshev, V. Rybakov, “A tableau method for checking rule admissibility in S4”, Electronic Notes in Theoretical Computer Science, 262 (2010), 17–32 | DOI | MR | Zbl

[32] J. van Benthem, “Tense logic and time”, Notre Dame J. Formal Logic, 25:1 (1984), 1–16 | MR | Zbl

[33] M.Y. Vardi, “An automata-theoretic approach to linear temporal logic”, Banff Higher Order Workshop, 1995, 238–266 http://citeseer.ist.psu.edu/vardi96automatatheoretic.html

[34] M.Y. Vardi, “Reasoning about the past with two-way automata”, ICALP, LNCS, 1443, eds. Larsen K. G., Skyum S., Winskel G., Springer, 1998, 628–641 | DOI | MR | Zbl

[35] Y. Venema, “Temporal Logic”, Blackwell Guide on Philosophical Logic, Chapter 10, ed. L. Goble, Blackwell Publishers, 2001, 203–223 | MR | Zbl