NEXAFS and FTIR spectroscopy of Co-doped SrBi$_2$Nb$_2$O$_9$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 5-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solid-phase ceramic method was used to synthesize cobalt-containing solid solutions based on SrBi$_2$Nb$_2$O$_9$. NEXAFS (Near Edge X-ray Absorption Fine Structure) and IR spectroscopy were used to study the electronic state of cobalt atoms in solid cross-links with a layered perovskite-like structure. It was found that cobalt atoms are in high-spin states of Co(III) and, mainly, Co(II) in an octahedral oxygen environment.
Keywords: IR spectroscopy, cobalt.
Mots-clés : Aurivillius phases, NEXAFS
@article{JSFU_2022_15_1_a0,
     author = {Nadezhda A. Zhuk and Elena U. Ipatova and Boris A. Makeev and Sergey V. Nekipelov and Dmitriy S. Beznosikov and Lubov V. Rychkova},
     title = {NEXAFS and {FTIR} spectroscopy of {Co-doped} {SrBi}$_2${Nb}$_2${O}$_9$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a0/}
}
TY  - JOUR
AU  - Nadezhda A. Zhuk
AU  - Elena U. Ipatova
AU  - Boris A. Makeev
AU  - Sergey V. Nekipelov
AU  - Dmitriy S. Beznosikov
AU  - Lubov V. Rychkova
TI  - NEXAFS and FTIR spectroscopy of Co-doped SrBi$_2$Nb$_2$O$_9$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 5
EP  - 12
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a0/
LA  - en
ID  - JSFU_2022_15_1_a0
ER  - 
%0 Journal Article
%A Nadezhda A. Zhuk
%A Elena U. Ipatova
%A Boris A. Makeev
%A Sergey V. Nekipelov
%A Dmitriy S. Beznosikov
%A Lubov V. Rychkova
%T NEXAFS and FTIR spectroscopy of Co-doped SrBi$_2$Nb$_2$O$_9$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 5-12
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a0/
%G en
%F JSFU_2022_15_1_a0
Nadezhda A. Zhuk; Elena U. Ipatova; Boris A. Makeev; Sergey V. Nekipelov; Dmitriy S. Beznosikov; Lubov V. Rychkova. NEXAFS and FTIR spectroscopy of Co-doped SrBi$_2$Nb$_2$O$_9$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a0/

[1] V.A. Isupov, “Crystal chemical aspects of the bismuth-containing layered compounds of the A$_{m-1}$Bi$_2$BmO$_{3m+3}$ type”, Ferroelectr., 189 (1996), 211–227 | DOI

[2] B. Aurivillius, P.H. Fang, “Ferroelectricity in the Compound Ba$_2$Bi$_4$Ti$_5$O$_{ B.18}$”, Phys. Rev., 126 (1962), 893–896 | DOI

[3] L. Goux, J.G. Lisoni, M. Schwitters et al., “Composition control and ferroelectric properties of sidewalls in integrated three-dimensional SrBi$_2$Ta$_2$O$_9$-based ferroelectric capacitors”, J. Appl. Phys., 98 (2005), 054507 | DOI

[4] H. Yan, H. Zhang, R. Ubic, M.J. Reece et al., “A Lead-Free High-Curie-Point Ferroelectric Ceramic”, Adv. Mater., 98 (2005), 1261–1265 | DOI

[5] V.A. Isupov, “Crystal chemical aspects of the bismuth-containing layered compounds of the A$_{m-1}$Bi$_2$B$_m$O$_{3m+3}$ type”, Ferroelectr., 189 (1996), 211–227 | DOI

[6] B.J. Kennedy, Q. Zhou, Ismunandar, Y. Kubota, K. Kato, “Cation disorder and phase transition in the four-layer ferroelectric Aurivillius phase ABi$_{4}$Ti$_{4}$O$_{15}$ (A=Ca, Sr, Ba, Pb)”, J. Sol. St. Chem., 181 (2008), 1377–1386 | DOI

[7] R. Macquart, B.J. Kennedy, Y. Shimakawa, “Cation Disorder in the Ferroelectric Oxides ABi$_2$Ta$_2$O$_9$, A = Ca, Sr, Ba”, J. Sol. St. Chem., 160 (2001), 174–177 | DOI

[8] C.H. Hervoches, P. Lightfoot, “Cation Disorder in Three-Layer Aurivillius Phases: Structural Studies of Bi$_{2-x}$Sr$_{2+x}$Ti$_{1-x}$Nb$_{2+x}$O$_{12}$ ($0 x 0.8$) and Bi$_{4-x}$La$_x$Ti$_3$O$_{12}$ ($x =$ 1 and 2)”, J. Sol. St. Chem., 153 (2000), 66–73 | DOI

[9] Ismunandar, B.A. Hunter, B.J. Kennedy, “Cation disorder in the ferroelectric Aurivillius phase PbBi$_2$Nb$_2$O$_9$: an anamolous dispersion X-ray diffraction study”, Sol. St. Ion., 112 (1998), 281–289 | DOI

[10] I.J. Kennedy, B.J. Kennedy, Gunawan, Marsongkohadi, “Structure of ABi$_2$Nb$_2$O$_9$ (A = Sr, Ba): Refinement of Powder Neutron Diffraction Data”, J. Sol. St. Chem., 126 (1996), 135–141 | DOI

[11] B. Wachsmuth, E. Zschech, N.W. Thomas, S.G. Brodie, S.J. Gurman, S. Baker, S.C. Bayliss, “Structure model of Aurivillius compounds”, Phys. Stat. sol. (a), 135 (1993), 59–71 | DOI

[12] I.J. Kennedy, B.J. Kennedy, “Effect of temperature on cation disorder in ABi$_2$Nb$_2$O$_9$ (A=Sr, Ba)”, J. Mater. Chem., 9 (1999), 541–544 | DOI

[13] T.-C. Chen, C.-l. Thio, S.B. Desu, “Impedance spectroscopy of SrBi$_2$Ta$_2$O$_9$ and SrBi$_2$Nb$_2$O$_9$ ceramics correlation with fatigue behavior”, J. Mater. Res., 12 (1997), 2628–2637 | DOI

[14] L.G. Akselrud, Yu.N. Grin, P. Yu.Zavalii, V.K. Pecharski, V.S. Fundamentski, “CSD, an universal program package for single crystal and/or powder structure data treatment”, Twelfth European Crystallogr. Meeting, Collected Abstracts (Moscow, 1989)

[15] J. Stohr, NEXAFS Spectroscopy, Springer, Berlin, 1992

[16] R.D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides”, Acta Crystallogr. A, 32 (1976), 751–767 | DOI

[17] L.V. Rychkova, S.V. Nekipelov, B.A. Makeev, V.A. Belyy, D.S. Beznosikov, N.A. Zhuk, “Magnetic Behavior and Nexafs-spectroscopy of Bi$_2$BaNb$_{2--2x}$So$_{2x}$O$_{9-\delta}$”, J. Sib. Federal University. Mathem. Phys., 12 (2019), 687–693 | DOI | Zbl

[18] T.J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stöhr, R.L. White, “Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy”, Phys. Rev. B, 64 (2001), 214422 | DOI

[19] S.Y. Istomin, O.A. Tyablikov, S.M. Kazakov, E.V. Antipov, A.I. Kurbakov, A.A. Tsirlin, N. Hollmann, Y.Y. Chin, L H.-J. in, C.T. Chen, A. Tanaka, L.H. Tjeng, Z. Hu, “An unusual high-spin ground state of Co$^{3+}$ in octahedral coordination in brownmillerite-type cobalt oxide”, Dalt. Trans., 44 (2015), 10708–10713 | DOI

[20] M. Merz, D. Fuchs, A. Assmann, S. Uebe, H. v.Lohneysen, P. Nagel, S. Schuppler, “Spin and orbital states in single-layered La$_{2-x}$Ca$_x$CoO$_4$ studied by doping- and temperature-dependent near-edge x-ray absorption fine structure”, Phys. Rev. B, 84 (2011), 014436 | DOI

[21] L.A. Montoro, M. Abbate, J.M. Rosolena, “Electronic Structure of Transition Metal Ions in Deintercalated and Reintercalated LiCo$_{0.5}$Ni$_{0.5}$O$_2$”, J. Electrochem. Soc., 147 (2000), 1651–1657 | DOI

[22] M. Premila, A. Bharathi, N. Gayathri, P. Yasodha, Y. Hariharan, C.S. Sundar, “Metal-insulator transition in Ni-doped Na$_{0.75}$CoO$_2$: Insights from infrared studies”, J. Phys., 67 (2006), 153–162

[23] C.-W. Tang, C.-B. Wang, S.-H. Chien, “Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS”, Thermochim. Acta, 473 (2008), 68–73 | DOI

[24] G.X. Pan, X.H. Xia, F. Cao, J. Chen, Y. Zhang, “Template-free synthesis of hierarchical porous Co$_3$O$_4$ microspheres and their application for electrochemical energy storage”, J. Electrochim. Acta, 173 (2015), 385–392 | DOI

[25] K. Cheng, D.X. Cao, F. Yang, Y. Xu, G. Sun, K. Ye, G. Wang, “Facile synthesis of morphology-controlled Co$_3$O$_4$ nanostructures through solvothermal method with enhanced catalytic activity for H$_2$O$_2$ electroreduction”, J. Power Sources, 253 (2014), 214–223 | DOI

[26] M. Th.Makhlouf, B.M. Abu-Zied, T.H. Mansoure, “Direct Fabrication of Cobalt Oxide Nano-Particles Employing Glycine as a Combustion Fuel”, Phys. Chem., 2 (2012), 86–93 | DOI