Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_6_a7, author = {Valentin G. Bazhenov and Maxim N. Zhestkov}, title = {Computer modeling deformation of porous elastoplastic materials and identification their characteristics using the principle of three-dimensional similarity}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {746--755}, publisher = {mathdoc}, volume = {14}, number = {6}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a7/} }
TY - JOUR AU - Valentin G. Bazhenov AU - Maxim N. Zhestkov TI - Computer modeling deformation of porous elastoplastic materials and identification their characteristics using the principle of three-dimensional similarity JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 746 EP - 755 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a7/ LA - en ID - JSFU_2021_14_6_a7 ER -
%0 Journal Article %A Valentin G. Bazhenov %A Maxim N. Zhestkov %T Computer modeling deformation of porous elastoplastic materials and identification their characteristics using the principle of three-dimensional similarity %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 746-755 %V 14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a7/ %G en %F JSFU_2021_14_6_a7
Valentin G. Bazhenov; Maxim N. Zhestkov. Computer modeling deformation of porous elastoplastic materials and identification their characteristics using the principle of three-dimensional similarity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 746-755. http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a7/
[1] P.G.Cheremskoy, Metody issledovaniya poristosty tverdyh tel, Energoatomizdat, M., 1985, 112 pp. (Russian)
[2] A.A.Vityaz, V.M.Kaptsevich, A.G.Kostornov, Formirovanie struktury i svoistv poristyh poroshkovyh materialov, Metallurgiya, M., 1993, 240 pp. (Russian)
[3] A.Ya.Krasovskiy, “Nekotorye zakonomernosti deformirovaniya i razrusheniya poristyh metallokeramicheskih materialov na osnove zheleza. Soobshchenie 1”, Poroshkovaya metallurgiya, 4 (1964), 3–7 (Russian)
[4] A.Ya.Krasovskiy, “Nekotorye zakonomernosti deformirovaniya i razrusheniya poristyh metallokeramicheskih materialov na osnove zheleza. Soobshchenie 2”, Poroshkovaya metallurgiya, 5 (1964), 9–15 (Russian)
[5] V.V.Skorokhod, L.M.Tuchinskiy, “Uslovie plastichnosti poristyh tel”, Poroshkovaya metallurgiya, 11 (1978), 83–87 (Russian)
[6] L.J.Gibson, M.F.Ashby, Cellular Solids structure and properties, Pergamon Press, Oxford, 1988, 503 pp. | Zbl
[7] E.Andrews, W.Sanders, L.J.Gibson, “Compressive and tensile behavior of aluminum foams”, Materials Science and Engineering, A270 (1999), 113–124 | DOI
[8] V.V.Polyakov, A.V.Golovin, “Moduli uprugosti poristyh materialov”, FMM, RAN, 79:2 (1995), 57–60 (Russian)
[9] V.V.Polyakov, A.V.Golovin, “Vliyanie poristosti nd uprugie harakteristiki metalla”, Metally, 4 (1995), 81–85 (Russian)
[10] K.S.Chernyavskiy, Stereologiya v metallovedenii, Metallurgia, M., 1977, 280 pp. (Russian)
[11] R.Bradford, T.M.Dofine, H.Preston-Thomas, Pribory i methody fizicheskogo metallovedeniya, Mir, M., 1973, 786 pp. (Russian)
[12] J.Banhart, J.Baumeister, “Deformation characteristics of metal foams”, Journal of mat. Science, 33 (1998), 1431–1440 | DOI
[13] H.Bart-Smith, A.F.Bastawros, A.G.Evans and other, “Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomografy and surface strain mapping”, Acta mat., 46:10 (1998), 3583–3592 | DOI
[14] M.Dorozhko, A.Seweryn, “Finite Element Modeling of Anisotropic Deformation Behavior of the Porous Materials Based on Microtomographic Images”, AIP Conference Proceedings, 1780 (2016), 060001 | DOI
[15] M.Dorozhko,A.Seweryn, “Pore-scale numerical modelling of large deformation behaviour of sintered porous metals under compression using computed microtomography”, Mechanics of Materials, 2019, 1–18
[16] V.L.Kirpichyov, “O podobii pri uprugih yavloniyah”, Zhurnal Russkogo fiziko-himicheskogo obshchestva, 6:9 (1874), 90–120 (in Russian)
[17] V.G.Bazhenov, M.N.Zhestkov, “Issledovanie primenimosti printsipa podobiya v zadachah uprugoplasticheskogo izgiba i ustoychivosti pri osevom szhatii gusto perforirovannyh plastin i obolochek”, Materialy XII Mezhdunarodnoy konferentsii po prikladnoy matematike I mehanike v aerokosmicheskoy otrasli, NPNJ'2018, 2018, 326–328 (in Russian)
[18] V.G.Bazhenov, M.N.Zhestkov, “About the applicability limits of the tymoshenko model and the principle of two-dimensional similarities in problems of elastic plastic bending and stability of densely perforated plates and shells”, Journal of physics: conference series, 1158 (2019), 022022 | DOI
[19] V.G.Bazhenov, S.L.Osetrov, D.L.Osetrov, A.A.Artemyeva, “Influence of the type of stress-strain state on the true stress-strain curve for the elastoplastic materials”, Materials physics and mechanics, 28:1–2 (2016), 53–56
[20] V.G.Bazhenov, V.K.Lomunov, S.L.Osetrov, E.V.Pavlenkova, “Eksperimentalno-raschetniy metod issledovaniya bolshyh uprugoplasticheskih deformatsiy tsilindricheskih obolochek pri rastyazhenii do razryva i postroenie diagram deformirovaniya pri neodnorodnom napryazhenno-deformirovannom sostoyanii”, Prikladnaya mehanika i tehnicheskaya fizika, 2013, no. 1, 116–124 (in Russian) | Zbl
[21] Abaqus Analysis User's Guide. Abaqus Theory Guide, Simulia Abaqus, 2016