Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_6_a14, author = {{\CYRM}ikhail A. Guzev and Evgenii P. Riabokon}, title = {Construction of nonsingular stress fields for {non-Euclidean} model in planar deformations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {815--821}, publisher = {mathdoc}, volume = {14}, number = {6}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/} }
TY - JOUR AU - Мikhail A. Guzev AU - Evgenii P. Riabokon TI - Construction of nonsingular stress fields for non-Euclidean model in planar deformations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 815 EP - 821 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/ LA - en ID - JSFU_2021_14_6_a14 ER -
%0 Journal Article %A Мikhail A. Guzev %A Evgenii P. Riabokon %T Construction of nonsingular stress fields for non-Euclidean model in planar deformations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 815-821 %V 14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/ %G en %F JSFU_2021_14_6_a14
Мikhail A. Guzev; Evgenii P. Riabokon. Construction of nonsingular stress fields for non-Euclidean model in planar deformations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 815-821. http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/
[1] J.M. Burgers, “Physics. Some Considerations on the Fields of Stress Connected With Dislocations in a Regular Crystal Lattice, I, II”, Selected Papers of J. M. Burgers, eds. F.T.M. Nieuwstadt, J.A. Steketee, Springer, Dordrecht, 1995, 335–389 | DOI
[2] J.D. Eshelby, “The Continuum Theory of Lattice Defects”, Solid State Physics, 1956, 79–144 | DOI
[3] W. Cai, A. Arsenlis, C.R. Weinberger, V.V. Bulatov, “A Non-Singular Continuum Theory of Dislocations”, Journal of the Mechanics and Physics of Solids, 54:3 (2006), 561–587 | DOI | Zbl
[4] M. Lazar, “A Nonsingular Solution of the Edge Dislocation in the Gauge Theory of Dislocations”, Journal of Physics A: Mathematical and General, 36:5 (2003), 1415–1437 | DOI | Zbl
[5] M. Lazar, G.A. Maugin, “Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity”, International Journal of Engineering Science, 43:13–14 (2005), 1157–1184 | DOI | Zbl
[6] M. Lazar, “Non-Singular Dislocation Loops in Gradient Elasticity”, Physics Letters A, 376:21 (2012), 1757–1758 | DOI
[7] M. Lazar, “The Fundamentals of Non-Singular Dislocations in the Theory of Gradient Elasticity: Dislocation Loops and Straight Dislocations”, International Journal of Solids and Structures, 50:2 (2013), 352–362 | DOI
[8] M. Lazar, G. Po, “The Non-Singular Green Tensor of Gradient Anisotropic Elasticity of Helmholtz Type”, European Journal of Mechanics – A/Solids, 50 (2015), 152–362 | DOI
[9] M. Lazar, G. Po, “The Non-Singular Green Tensor of Gradient Anisotropic Elasticity of Helmholtz Type”, Physics Letters A, 379:24–25 (2015), 1538–1543 | DOI | Zbl
[10] G. Po, M. Lazar, N.C. Admal, N. Ghoniem, “A Non-Singular Theory of Dislocations in Anisotropic Crystals”, International Journal of Plasticity, 103 (2018), 1–22 | DOI
[11] J. Kioseoglou, I. Konstantopoulos, G. Ribarik, G.P. Dimitrakopulos, E.C. Aifantis, “Nonsingular Dislocation and Crack Fields: Implications to Small Volumes”, Microsystem Technologies, 15:1 (2008), 117–121 | DOI
[12] E.C. Aifantis, “A note on Gradient Elasticity and Nonsingular Crack Fields”, Journal of the Mechanical Behavior of Materials, 20:4–5 (2012), 103–105 | DOI
[13] I. Konstantopoulos, E.C. Aifantis, “Gradient Elasticity Applied to a Crack”, Journal of the Mechanical Behavior of Materials, 22:5–6 (2013), 193–201 | DOI
[14] K. Parisis, I. Konstantopoulos, E.C. Aifantis, “Nonsingular Solutions of GradEla Models for Dislocations: An Extension to Fractional GradEla”, Journal of Micromechanics and Molecular Physics, 3:3–4 (2018), 193–201 | DOI
[15] K. Kondo, “On the Geometrical and Physical Foundations of the Theory of Yielding”, Proc. Japan. Nat. Congr. Apll. Mech., v. 2, 1952, 41–47
[16] B.A. Bilby, R. Bullough, E. Smith, “Continuous Distributions of Dislocations: a New Application of the Methods of Non-Reimannian Geometry”, Proc. Roy. Soc., A231 (1955), 263–267 | DOI
[17] R. Stojanovic, “Equilibrium Conditions for Internal Stresses in Non-Euclidian Continua and Stress Space”, International Journal of Engineering Science, 1:3 (1963), 323–327 | DOI
[18] S. Minagawa, “On the Stress Functions in Elastodynamics”, Acta Mechanica, 24:3 (1976), 209–217 | DOI | Zbl
[19] E. Kroner, “Incompatibility, Defects, and Stress Functions in the Mechanics of Generalized Continua”, International Journal of Solids and Structures, 21:7 (1985), 747–756 | DOI | Zbl
[20] D.G.B. Edelen, “A Correct, Globally Defined Solution of the Screw Dislocation Problem in the Gauge Theory of Defects”, International Journal of Engineering Science, 34:1 (1996), 81–86 | DOI | Zbl
[21] M.A. Guzev, Non-Euclidean Models of Elastoplastic Materials with Structure Defects, Lambert Academic Publishing, 2010
[22] A. Yavari, A. Goriely, “Riemann-Cartan Geometry of Nonlinear Disclination Mechanics”, International Journal of Engineering Science, 34:1 (2012), 81–86 | DOI
[23] M.E. Gurtin, “A Generalization of the Beltrami Stress Functions in Continuum Mechanics”, Archive for Rational Mechanics and Analysis, 13:1 (1963), 321–329 | DOI | Zbl
[24] V.P. Myasnikov, M.A. Guzev, A.A. Ushakov, “Self-Equilibrated Stress Fields in a Continuous Medium”, Journal of Applied Mechanics and Technical Physics, 45:4 (2004), 558–564 | DOI
[25] V.P. Myasnikov, M.A. Guzev, “Geometric Model of Internal Self-Equilibrated Stresses in Solids”, Doklady Physics, 46:10 (2001), 740–741 | DOI
[26] M.A. Guzev, “Structure of Kinematic and Force Fields in the Riemannian Continuum Model”, Journal of Applied Mechanics and Technical Physics, 52:5 (2003), 709–716 | DOI
[27] S.P. Novikov, I.A. Taimanov, Modern Geometric Structures and Fields, Graduate Studies in Mathematics, 71, American Mathematical Society, 2006 | DOI | Zbl
[28] M.A. Guzev, A.A. Paroshin, “Non-Euclidean Model of the Zonal Disintegration of Rocks Around an Underground Working”, Journal of Applied Mechanics and Technical Physics, 42:1 (2001), 131–139 | DOI | Zbl