Construction of nonsingular stress fields for non-Euclidean model in planar deformations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 815-821.

Voir la notice de l'article provenant de la source Math-Net.Ru

A material with a microstructure is considered. A material is described on the basis of a non-Euclidean model of a continuous medium. In equilibrium, the total stress field is represented as the sum of elastic and self-balanced stresses, the parameterization of which is given through the scalar curvature of the Ricci tensor. It is proposed to use the spectral biharmonic equation to calculate the scalar curvature. Using the example of a plane strain state of a material, it is shown that the amplitude coefficients of elastic and self-balanced fields can be chosen so that singularities of the same type compensate each other in the full stress field.
Keywords: nonsingular stress field, planar deformation, spectral biharmonic equation.
Mots-clés : microstructure
@article{JSFU_2021_14_6_a14,
     author = {{\CYRM}ikhail A. Guzev and Evgenii P. Riabokon},
     title = {Construction of nonsingular stress fields for {non-Euclidean} model in planar deformations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {815--821},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/}
}
TY  - JOUR
AU  - Мikhail A. Guzev
AU  - Evgenii P. Riabokon
TI  - Construction of nonsingular stress fields for non-Euclidean model in planar deformations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 815
EP  - 821
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/
LA  - en
ID  - JSFU_2021_14_6_a14
ER  - 
%0 Journal Article
%A Мikhail A. Guzev
%A Evgenii P. Riabokon
%T Construction of nonsingular stress fields for non-Euclidean model in planar deformations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 815-821
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/
%G en
%F JSFU_2021_14_6_a14
Мikhail A. Guzev; Evgenii P. Riabokon. Construction of nonsingular stress fields for non-Euclidean model in planar deformations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 815-821. http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a14/

[1] J.M. Burgers, “Physics. Some Considerations on the Fields of Stress Connected With Dislocations in a Regular Crystal Lattice, I, II”, Selected Papers of J. M. Burgers, eds. F.T.M. Nieuwstadt, J.A. Steketee, Springer, Dordrecht, 1995, 335–389 | DOI

[2] J.D. Eshelby, “The Continuum Theory of Lattice Defects”, Solid State Physics, 1956, 79–144 | DOI

[3] W. Cai, A. Arsenlis, C.R. Weinberger, V.V. Bulatov, “A Non-Singular Continuum Theory of Dislocations”, Journal of the Mechanics and Physics of Solids, 54:3 (2006), 561–587 | DOI | Zbl

[4] M. Lazar, “A Nonsingular Solution of the Edge Dislocation in the Gauge Theory of Dislocations”, Journal of Physics A: Mathematical and General, 36:5 (2003), 1415–1437 | DOI | Zbl

[5] M. Lazar, G.A. Maugin, “Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity”, International Journal of Engineering Science, 43:13–14 (2005), 1157–1184 | DOI | Zbl

[6] M. Lazar, “Non-Singular Dislocation Loops in Gradient Elasticity”, Physics Letters A, 376:21 (2012), 1757–1758 | DOI

[7] M. Lazar, “The Fundamentals of Non-Singular Dislocations in the Theory of Gradient Elasticity: Dislocation Loops and Straight Dislocations”, International Journal of Solids and Structures, 50:2 (2013), 352–362 | DOI

[8] M. Lazar, G. Po, “The Non-Singular Green Tensor of Gradient Anisotropic Elasticity of Helmholtz Type”, European Journal of Mechanics – A/Solids, 50 (2015), 152–362 | DOI

[9] M. Lazar, G. Po, “The Non-Singular Green Tensor of Gradient Anisotropic Elasticity of Helmholtz Type”, Physics Letters A, 379:24–25 (2015), 1538–1543 | DOI | Zbl

[10] G. Po, M. Lazar, N.C. Admal, N. Ghoniem, “A Non-Singular Theory of Dislocations in Anisotropic Crystals”, International Journal of Plasticity, 103 (2018), 1–22 | DOI

[11] J. Kioseoglou, I. Konstantopoulos, G. Ribarik, G.P. Dimitrakopulos, E.C. Aifantis, “Nonsingular Dislocation and Crack Fields: Implications to Small Volumes”, Microsystem Technologies, 15:1 (2008), 117–121 | DOI

[12] E.C. Aifantis, “A note on Gradient Elasticity and Nonsingular Crack Fields”, Journal of the Mechanical Behavior of Materials, 20:4–5 (2012), 103–105 | DOI

[13] I. Konstantopoulos, E.C. Aifantis, “Gradient Elasticity Applied to a Crack”, Journal of the Mechanical Behavior of Materials, 22:5–6 (2013), 193–201 | DOI

[14] K. Parisis, I. Konstantopoulos, E.C. Aifantis, “Nonsingular Solutions of GradEla Models for Dislocations: An Extension to Fractional GradEla”, Journal of Micromechanics and Molecular Physics, 3:3–4 (2018), 193–201 | DOI

[15] K. Kondo, “On the Geometrical and Physical Foundations of the Theory of Yielding”, Proc. Japan. Nat. Congr. Apll. Mech., v. 2, 1952, 41–47

[16] B.A. Bilby, R. Bullough, E. Smith, “Continuous Distributions of Dislocations: a New Application of the Methods of Non-Reimannian Geometry”, Proc. Roy. Soc., A231 (1955), 263–267 | DOI

[17] R. Stojanovic, “Equilibrium Conditions for Internal Stresses in Non-Euclidian Continua and Stress Space”, International Journal of Engineering Science, 1:3 (1963), 323–327 | DOI

[18] S. Minagawa, “On the Stress Functions in Elastodynamics”, Acta Mechanica, 24:3 (1976), 209–217 | DOI | Zbl

[19] E. Kroner, “Incompatibility, Defects, and Stress Functions in the Mechanics of Generalized Continua”, International Journal of Solids and Structures, 21:7 (1985), 747–756 | DOI | Zbl

[20] D.G.B. Edelen, “A Correct, Globally Defined Solution of the Screw Dislocation Problem in the Gauge Theory of Defects”, International Journal of Engineering Science, 34:1 (1996), 81–86 | DOI | Zbl

[21] M.A. Guzev, Non-Euclidean Models of Elastoplastic Materials with Structure Defects, Lambert Academic Publishing, 2010

[22] A. Yavari, A. Goriely, “Riemann-Cartan Geometry of Nonlinear Disclination Mechanics”, International Journal of Engineering Science, 34:1 (2012), 81–86 | DOI

[23] M.E. Gurtin, “A Generalization of the Beltrami Stress Functions in Continuum Mechanics”, Archive for Rational Mechanics and Analysis, 13:1 (1963), 321–329 | DOI | Zbl

[24] V.P. Myasnikov, M.A. Guzev, A.A. Ushakov, “Self-Equilibrated Stress Fields in a Continuous Medium”, Journal of Applied Mechanics and Technical Physics, 45:4 (2004), 558–564 | DOI

[25] V.P. Myasnikov, M.A. Guzev, “Geometric Model of Internal Self-Equilibrated Stresses in Solids”, Doklady Physics, 46:10 (2001), 740–741 | DOI

[26] M.A. Guzev, “Structure of Kinematic and Force Fields in the Riemannian Continuum Model”, Journal of Applied Mechanics and Technical Physics, 52:5 (2003), 709–716 | DOI

[27] S.P. Novikov, I.A. Taimanov, Modern Geometric Structures and Fields, Graduate Studies in Mathematics, 71, American Mathematical Society, 2006 | DOI | Zbl

[28] M.A. Guzev, A.A. Paroshin, “Non-Euclidean Model of the Zonal Disintegration of Rocks Around an Underground Working”, Journal of Applied Mechanics and Technical Physics, 42:1 (2001), 131–139 | DOI | Zbl