Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_5_a3, author = {Azam A. Imomov}, title = {On estimation of the convergence rate to invariant measures in {Markov} branching processes with possibly infinite variance and immigration}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {573--583}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/} }
TY - JOUR AU - Azam A. Imomov TI - On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 573 EP - 583 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/ LA - en ID - JSFU_2021_14_5_a3 ER -
%0 Journal Article %A Azam A. Imomov %T On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 573-583 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/ %G en %F JSFU_2021_14_5_a3
Azam A. Imomov. On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 573-583. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/
[1] K.B. Athreya, P.E. Ney, Branching processes, Springer, New York, 1972 | Zbl
[2] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, 1987 | Zbl
[3] A.A. Imomov, A.Kh. Meyliev, On asymptotic structure of continuous-time Markov Branching Processes allowing Immigration and withouthigh-order moments, 2020, arXiv: 2006.09857
[4] A.A. Imomov, “On Conditioned Limit Structure of the Markov Branching Process without Finite Second Moment”, Malaysian Journal of Mathematical Sciences, 11:3 (2017), 393–422 | Zbl
[5] A.A. Imomov, “On long-term behavior of continuous-time Markov branching processes allowing immigration”, Journal of Siberian Federal University. Mathematics and Physics, 7:4 (2014), 443–454 | DOI | Zbl
[6] A.A. Imomov, “On Markov analogue of Q-processes with continuous time”, Theory of Probability and Mathematical Statistics, 84 (2012), 57–64 | DOI | Zbl
[7] J. Li, A. Chen, A.G. Pakes, “Asymptotic properties of the Markov Branching Process with Immigration”, Journal of Theoretical Probability, 25 (2012), 122–143 | DOI | Zbl
[8] A.G. Pakes, “Revisiting conditional limit theorems for the mortal simple branching process”, Bernoulli, 5:6 (1999), 969–998 | DOI | Zbl
[9] A.G. Pakes, “On Markov branching processes with immigration”, Sankhyā: The Indian Journal of Statistics, A37 (1975), 129–138 | Zbl
[10] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976 | Zbl
[11] B.A. Sevastyanov, Branching processes, Nauka, M., 1971 (in Russian) | Zbl