On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 573-583.

Voir la notice de l'article provenant de la source Math-Net.Ru

The continuous-time Markov Branching Process with Immigration is discussed in the paper. A critical case wherein the second moment of offspring law and the first moment of immigration law are possibly infinite is considered. Assuming that the non-linear parts of the appropriate generating functions are regularly varying in the sense of Karamata, theorems on convergence of transition functions of the process to invariant measures are proved. The rate of convergence is determined provided that slowly varying factors are with remainder.
Keywords: Markov branching process, generating functions, transition functions, slowly varying function, invariant measures
Mots-clés : immigration, convergence rate.
@article{JSFU_2021_14_5_a3,
     author = {Azam A. Imomov},
     title = {On estimation of the convergence rate to invariant measures in {Markov} branching processes with possibly infinite variance and immigration},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {573--583},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/}
}
TY  - JOUR
AU  - Azam A. Imomov
TI  - On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 573
EP  - 583
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/
LA  - en
ID  - JSFU_2021_14_5_a3
ER  - 
%0 Journal Article
%A Azam A. Imomov
%T On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 573-583
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/
%G en
%F JSFU_2021_14_5_a3
Azam A. Imomov. On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 573-583. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a3/

[1] K.B. Athreya, P.E. Ney, Branching processes, Springer, New York, 1972 | Zbl

[2] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, 1987 | Zbl

[3] A.A. Imomov, A.Kh. Meyliev, On asymptotic structure of continuous-time Markov Branching Processes allowing Immigration and withouthigh-order moments, 2020, arXiv: 2006.09857

[4] A.A. Imomov, “On Conditioned Limit Structure of the Markov Branching Process without Finite Second Moment”, Malaysian Journal of Mathematical Sciences, 11:3 (2017), 393–422 | Zbl

[5] A.A. Imomov, “On long-term behavior of continuous-time Markov branching processes allowing immigration”, Journal of Siberian Federal University. Mathematics and Physics, 7:4 (2014), 443–454 | DOI | Zbl

[6] A.A. Imomov, “On Markov analogue of Q-processes with continuous time”, Theory of Probability and Mathematical Statistics, 84 (2012), 57–64 | DOI | Zbl

[7] J. Li, A. Chen, A.G. Pakes, “Asymptotic properties of the Markov Branching Process with Immigration”, Journal of Theoretical Probability, 25 (2012), 122–143 | DOI | Zbl

[8] A.G. Pakes, “Revisiting conditional limit theorems for the mortal simple branching process”, Bernoulli, 5:6 (1999), 969–998 | DOI | Zbl

[9] A.G. Pakes, “On Markov branching processes with immigration”, Sankhyā: The Indian Journal of Statistics, A37 (1975), 129–138 | Zbl

[10] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976 | Zbl

[11] B.A. Sevastyanov, Branching processes, Nauka, M., 1971 (in Russian) | Zbl