On an inverse problem for a stationary equation with boundary condition of the third kind
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 659-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

The identification of an unknown coefficient in the lower term of elliptic second-order differential equation $Mu+ku=f$ with boundary condition of the third kind is considered. The identification of the coefficient is based on integral boundary data. The local existence and uniqueness of the strong solution for the inverse problem is proved.
Keywords: inverse problem for PDE, boundary value problem, second-order elliptic equation, existence and uniqueness theorem.
@article{JSFU_2021_14_5_a13,
     author = {Alexander V. Velisevich},
     title = {On an inverse problem for a stationary equation with boundary condition of the third kind},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {659--666},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/}
}
TY  - JOUR
AU  - Alexander V. Velisevich
TI  - On an inverse problem for a stationary equation with boundary condition of the third kind
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 659
EP  - 666
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/
LA  - en
ID  - JSFU_2021_14_5_a13
ER  - 
%0 Journal Article
%A Alexander V. Velisevich
%T On an inverse problem for a stationary equation with boundary condition of the third kind
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 659-666
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/
%G en
%F JSFU_2021_14_5_a13
Alexander V. Velisevich. On an inverse problem for a stationary equation with boundary condition of the third kind. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 659-666. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/

[1] A. Sh.Lyubanova, “Identification of a constant coefficient in an elliptic equation”, Applicable Analysis, 87 (2008), 1121–1128 | DOI | Zbl

[2] A. Sh.Lyubanova, A. Tani, “An inverse problem for pseudoparabolic equation of filtration: the existence, uniqueness and regularity”, Applicable Analysis, 90 (2011), 1557–1571 | DOI | Zbl

[3] A. Sh.Lyubanova, “On an inverse problem for quasi-linear elliptic equation”, J. Sib. Fed. Univ. Math. Phys., 8 (2015), 38–48 | DOI | Zbl

[4] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 2000 | Zbl

[5] A. Sh.Lyubanova, A.V. Velisevich, “Inverse problems for the stationary and pseudoparabolic equations of diffusion”, Applicable Analysis, 98 (2019), 1997–2010 | DOI | Zbl

[6] M.M. Lavrentiev, On some inverse ill-posed problems of mathematical physics, Nauka, Novosibirsk, 1962 (in Russian)

[7] K.B. Sabitov, N.V. Martem'yanova, “An inverse problem for an equation of elliptic-hyperbolic type with a non-local boundary condition”, Siberian Math. J., 53 (2012), 507–519 | DOI | Zbl

[8] F. Kanca, “Inverse coefficient problem for a second-order elliptic equation with nonlocal boundary conditions”, Mathematical Methods in Applied Science, 39:11 (2015), 3152–3158 | DOI

[9] R. Amirov, Y. Mehraliyev, N. Heydarzade, “On an inverse boundary-value problem for a second-order elliptic equation with non-classical boundary conditions”, Cumhuriet Science Journal, 41:2 (2020), 443–455 | DOI

[10] G.V. Alekseev, E.A. Kalinina, “Identification of the lowest coefficient of a stationary convention-diffusion-reaction equation”, Sib. Zh. Ind. Mat., 10 (2007), 3–16 (in Russian) | Zbl

[11] H. Egger, J-F. Pietschmann, M. Schlobottom, “Simultaneous identification of diffusion and absorption coefficients in a quasi-linear elliptic problem”, Inverse Problems, 30 (2014), 035009 | DOI | Zbl

[12] O.A. Ladyzhenskaya, N.N. Uralceva, Linear and quasilinear elliptic equations, English transl., Academic Press, New York, 1973; Nauka, M., 1964