On an inverse problem for a stationary equation with boundary condition of the third kind
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 659-666
Voir la notice de l'article provenant de la source Math-Net.Ru
The identification of an unknown coefficient in the lower term of elliptic second-order differential equation $Mu+ku=f$ with boundary condition of the third kind is considered. The identification of the coefficient is based on integral boundary data. The local existence and uniqueness of the strong solution for the inverse problem is proved.
Keywords:
inverse problem for PDE, boundary value problem, second-order elliptic equation, existence and uniqueness theorem.
@article{JSFU_2021_14_5_a13,
author = {Alexander V. Velisevich},
title = {On an inverse problem for a stationary equation with boundary condition of the third kind},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {659--666},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/}
}
TY - JOUR AU - Alexander V. Velisevich TI - On an inverse problem for a stationary equation with boundary condition of the third kind JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 659 EP - 666 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/ LA - en ID - JSFU_2021_14_5_a13 ER -
%0 Journal Article %A Alexander V. Velisevich %T On an inverse problem for a stationary equation with boundary condition of the third kind %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 659-666 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/ %G en %F JSFU_2021_14_5_a13
Alexander V. Velisevich. On an inverse problem for a stationary equation with boundary condition of the third kind. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 659-666. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/