Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_5_a13, author = {Alexander V. Velisevich}, title = {On an inverse problem for a stationary equation with boundary condition of the third kind}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {659--666}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/} }
TY - JOUR AU - Alexander V. Velisevich TI - On an inverse problem for a stationary equation with boundary condition of the third kind JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 659 EP - 666 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/ LA - en ID - JSFU_2021_14_5_a13 ER -
%0 Journal Article %A Alexander V. Velisevich %T On an inverse problem for a stationary equation with boundary condition of the third kind %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 659-666 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/ %G en %F JSFU_2021_14_5_a13
Alexander V. Velisevich. On an inverse problem for a stationary equation with boundary condition of the third kind. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 659-666. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a13/
[1] A. Sh.Lyubanova, “Identification of a constant coefficient in an elliptic equation”, Applicable Analysis, 87 (2008), 1121–1128 | DOI | Zbl
[2] A. Sh.Lyubanova, A. Tani, “An inverse problem for pseudoparabolic equation of filtration: the existence, uniqueness and regularity”, Applicable Analysis, 90 (2011), 1557–1571 | DOI | Zbl
[3] A. Sh.Lyubanova, “On an inverse problem for quasi-linear elliptic equation”, J. Sib. Fed. Univ. Math. Phys., 8 (2015), 38–48 | DOI | Zbl
[4] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 2000 | Zbl
[5] A. Sh.Lyubanova, A.V. Velisevich, “Inverse problems for the stationary and pseudoparabolic equations of diffusion”, Applicable Analysis, 98 (2019), 1997–2010 | DOI | Zbl
[6] M.M. Lavrentiev, On some inverse ill-posed problems of mathematical physics, Nauka, Novosibirsk, 1962 (in Russian)
[7] K.B. Sabitov, N.V. Martem'yanova, “An inverse problem for an equation of elliptic-hyperbolic type with a non-local boundary condition”, Siberian Math. J., 53 (2012), 507–519 | DOI | Zbl
[8] F. Kanca, “Inverse coefficient problem for a second-order elliptic equation with nonlocal boundary conditions”, Mathematical Methods in Applied Science, 39:11 (2015), 3152–3158 | DOI
[9] R. Amirov, Y. Mehraliyev, N. Heydarzade, “On an inverse boundary-value problem for a second-order elliptic equation with non-classical boundary conditions”, Cumhuriet Science Journal, 41:2 (2020), 443–455 | DOI
[10] G.V. Alekseev, E.A. Kalinina, “Identification of the lowest coefficient of a stationary convention-diffusion-reaction equation”, Sib. Zh. Ind. Mat., 10 (2007), 3–16 (in Russian) | Zbl
[11] H. Egger, J-F. Pietschmann, M. Schlobottom, “Simultaneous identification of diffusion and absorption coefficients in a quasi-linear elliptic problem”, Inverse Problems, 30 (2014), 035009 | DOI | Zbl
[12] O.A. Ladyzhenskaya, N.N. Uralceva, Linear and quasilinear elliptic equations, English transl., Academic Press, New York, 1973; Nauka, M., 1964