Connecting homomorphism and separating cycles
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 647-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the construction of a long semi-exact Mayer–Vietoris sequence for the homology of any finite union of open subspaces. This sequence is used to obtain topological conditions of representation of the integral of a meromorphic $n$-form on an $n$-dimensional complex manifold in terms of Grothendieck residues. For such a representation of the integral to exist, it is necessary that the cycle of integration separates the set of polar hypersurfaces of the form. The separation condition in a number of cases turns out to be a sufficient condition for representing the integral as a sum of residues. Earlier, when describing such cases (in the works of Tsikh, Yuzhakov, Ulvert, etc.), the key was the condition that the manifold be Stein. The main result of this article is the relaxation of this condition.
Keywords: Mayer–Vietoris sequence, Grothendieck residue, separating cycle.
@article{JSFU_2021_14_5_a12,
     author = {Roman V. Ulvert},
     title = {Connecting homomorphism and separating cycles},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {647--658},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a12/}
}
TY  - JOUR
AU  - Roman V. Ulvert
TI  - Connecting homomorphism and separating cycles
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 647
EP  - 658
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a12/
LA  - en
ID  - JSFU_2021_14_5_a12
ER  - 
%0 Journal Article
%A Roman V. Ulvert
%T Connecting homomorphism and separating cycles
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 647-658
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a12/
%G en
%F JSFU_2021_14_5_a12
Roman V. Ulvert. Connecting homomorphism and separating cycles. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 647-658. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a12/

[1] R. Bott, L.W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, 1982 | Zbl

[2] K.S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994 (corrected reprint of the 1982 original)

[3] J. Chen, Z. Lü, J. Wu, “Orbit configuration spaces of small covers and quasi-toric manifolds”, Sci. China Math., 64 (2021), 167–196 | DOI | Zbl

[4] A.M. Gleason, “The Cauchy – Weil theorem”, J. Math. Mech., 12:3 (1963), 429–444 | Zbl

[5] A.K. Tsikh, Multidimensional Residues and Their Applications, AMS, Providence, 1992 | Zbl

[6] R.V. Ulvert, “Homological Resolutions in Problems About Separating Cycles”, Sib. Math. J., 59:3 (2018), 542–550 | DOI | Zbl

[7] R.V. Ulvert, “On computability of multiple integrals by means of a sum of local residues”, Sib. Èlektron. Mat. Izv., 15 (2018), 996–1010 (Russian) | DOI | Zbl

[8] J.W. Vick, Homology Theory: An Introduction to Algebraic Topology, Graduate Texts in Mathematics, 145, 2nd ed., Springer-Verlag, New York, 1994 | DOI | Zbl

[9] A.P. Yuzhakov, “The separating subgroup and local residues”, Sib. Math. J., 29:6 (1988), 1028–1033 (Russian) | DOI | Zbl