Connecting homomorphism and separating cycles
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 647-658
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the construction of a long semi-exact Mayer–Vietoris sequence for the homology of any finite union of open subspaces. This sequence is used to obtain topological conditions of representation of the integral of a meromorphic $n$-form on an $n$-dimensional complex manifold in terms of Grothendieck residues. For such a representation of the integral to exist, it is necessary that the cycle of integration separates the set of polar hypersurfaces of the form. The separation condition in a number of cases turns out to be a sufficient condition for representing the integral as a sum of residues. Earlier, when describing such cases (in the works of Tsikh, Yuzhakov, Ulvert, etc.), the key was the condition that the manifold be Stein. The main result of this article is the relaxation of this condition.
Keywords:
Mayer–Vietoris sequence, Grothendieck residue, separating cycle.
@article{JSFU_2021_14_5_a12,
author = {Roman V. Ulvert},
title = {Connecting homomorphism and separating cycles},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {647--658},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a12/}
}
TY - JOUR AU - Roman V. Ulvert TI - Connecting homomorphism and separating cycles JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 647 EP - 658 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a12/ LA - en ID - JSFU_2021_14_5_a12 ER -
Roman V. Ulvert. Connecting homomorphism and separating cycles. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 647-658. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a12/