On problem of finding all maximal induced bicliques of hypergraph
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 638-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding all maximal induced bicliques of a hypergraph is considered in this paper. Theorem on connection between induced bicliques of the hypergraph $H$ and corresponding vertex graph $L_2(H)$ is proved. An algorithm for finding all maximal induced bicliques is proposed. Results of computational experiments with the use of the proposed algorithm are presented.
Keywords: hypergraph, maximal induced bicliques, search algorithm.
@article{JSFU_2021_14_5_a11,
     author = {Aleksandr A. Soldatenko and Daria V. Semenova},
     title = {On problem of finding all maximal induced bicliques of hypergraph},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {638--646},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a11/}
}
TY  - JOUR
AU  - Aleksandr A. Soldatenko
AU  - Daria V. Semenova
TI  - On problem of finding all maximal induced bicliques of hypergraph
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 638
EP  - 646
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a11/
LA  - en
ID  - JSFU_2021_14_5_a11
ER  - 
%0 Journal Article
%A Aleksandr A. Soldatenko
%A Daria V. Semenova
%T On problem of finding all maximal induced bicliques of hypergraph
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 638-646
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a11/
%G en
%F JSFU_2021_14_5_a11
Aleksandr A. Soldatenko; Daria V. Semenova. On problem of finding all maximal induced bicliques of hypergraph. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 638-646. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a11/

[1] D. Maier, The Theory of Relational Databases, Mir, M., 1987 (in Russian)

[2] E.V. Konstantinova, V.A. Skorobogatov, “Application of hypergraph theory in chemistry”, Discrete Mathematics, 235:1–3 (2001), 365–383 | DOI | Zbl

[3] R.L. Graham, H.O. Pollak, “On the addressing problem for loop switching”, The Bell System Technical Journal, 50:8 (1971), 2495–2519 | DOI | Zbl

[4] V.B. Popov, “Extreme enumeration of the hypergraph vertex and the box clusterization problem”, Din. Sist., 28 (2010), 99–112 (in Russian) | Zbl

[5] B. Ganter, R. Wille, Formal concept analysis, Springer, 1999 | Zbl

[6] S. Kuznetsov, S. Obiedkov, “Comparing performance of algorithms for generating concept lattices”, J. Exp. Theor. Artif. Intell., 14 (2002), 189–216 | DOI | Zbl

[7] F. Zhong-Ji, L. Ming-Xue, H. Xiao-Xin, H. Xiao-Hui, Z. Xin, “Efficient algorithm for extreme maximal biclique mining in cognitive frequency decision making”, IEEE 3rd International Conference on Communication Software and Networks (2011), 25–30

[8] V. Acuna, C.E. Ferreira, A.S. Freire, E. Moreno, “Solving the maximum edge biclique packing problem on unbalanced bipartite graphs”, Discrete Applied Mathematics, 164:1 (2014), 2–12 | DOI | Zbl

[9] Y. Zhang, C.A. Phillips, G.L. Rogers, E.J. Baker, E.J. Chesler, M.A. Langston, “On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types”, BMC Bioinformatics, 15 (2014)

[10] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, J. Zhou, “Maximum biclique search at billion scale”, Proc. VLDB Endow., 13 (2020), 1359–1372 | DOI

[11] E. Shaham, H. Yu, X. Li, “On finding the maximum edge biclique in a bipartite graph: a subspace clustering approach”, Proc. of the 2016 SIAM International Conference on Data Mining (SDM), 2016, 315–323 | DOI

[12] A. Bretto, Hypergraph theory: an introduction, Springer, 2013 | Zbl

[13] I. Zverovich, I. Zverovich, “Bipartite bihypergraphs: A survey and new results”, Discrete Mathematics, 306 (2006), 801–811 | DOI | Zbl

[14] V.A. Emelichev, O.I. Melnikov, V.I. Sarvanov, R.I. Tyshkevich, Lekcii po teorii grafov, Nauka, M., 1990 (in Russian)

[15] M. Garey, D. Johnson, Computers and Intractability, Mir, M., 1982 (in Russian) | Zbl

[16] E. Prisner, “Bicliques in graphs I: bounds on their number”, Combinatorica, 20 (2000), 109–117 | DOI | Zbl

[17] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, B. Simeone, “Consensus algorithms for the generation of all maximal bicliques”, Discrete Applied Mathematics, 145 (2004), 11–21 | DOI | Zbl

[18] L. Beineke, R.J. Wilson, Topics in Algebraic Graph Theory, Mathematical Sciences Faculty Publications, 2008

[19] V.E. Tarakanov, Kombinatornye zadachi i (0, 1)-matricy, Nauka, M., 1985 (in Russian)

[20] A.A. Zykov, “Hypergraphs”, Russian Math. Surveys, 29:6 (1974), 89–156 (in Russian) | DOI | Zbl

[21] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, Third Edition, «Vil'yams», M., 2013 (in Russian)

[22] D. Hermelin, G. Manoussakis, “Efficient enumeration of maximal induced bicliques”, Discrete Applied Mathematics, 2020 | DOI

[23] P. Damaschke, “Enumerating maximal bicliques in bipartite graphs with favorable degree sequences”, Inf. Process. Lett., 114:6 (2014), 317–321 | DOI | Zbl