On some decompositions of matrices over algebraically closed and finite fields
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 547-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

Decomposition of every square matrix over an algebraically closed field or over a finite field into a sum of a potent matrix and a nilpotent matrix of order 2 is considered. This can be related to our recent paper, published in Linear Multilinear Algebra (2022). The question of when each square matrix over an infinite field can be decomposed into a periodic matrix and a nilpotent matrix of order 2 is also completely considered.
Keywords: field.
Mots-clés : nilpotent matrix, potent matrix, Jordan normal form, rational form
@article{JSFU_2021_14_5_a0,
     author = {Peter Danchev},
     title = {On some decompositions of matrices over algebraically closed and finite fields},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {547--553},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/}
}
TY  - JOUR
AU  - Peter Danchev
TI  - On some decompositions of matrices over algebraically closed and finite fields
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 547
EP  - 553
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/
LA  - en
ID  - JSFU_2021_14_5_a0
ER  - 
%0 Journal Article
%A Peter Danchev
%T On some decompositions of matrices over algebraically closed and finite fields
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 547-553
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/
%G en
%F JSFU_2021_14_5_a0
Peter Danchev. On some decompositions of matrices over algebraically closed and finite fields. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 547-553. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/

[1] A.N. Abyzov, I.I. Mukhametgaliev, “On some matrix analogues of the little Fermat theorem”, Mat. Zametki, 101 (2017), 187–192 | DOI | Zbl

[2] S. Breaz, “Matrices over finite fields as sums of periodic and nilpotent elements”, Linear Algebra $\$ Appl., 555 (2018), 92–97 | DOI | Zbl

[3] S. Breaz, G.Cǎlugǎreanu, P. Danchev, T. Micu, “Nil-clean matrix rings”, Linear Algebra $\$ Appl., 439 (2013), 3115–3119 | DOI | Zbl

[4] S. Breaz, S. Megiesan, “Nonderogatory matrices as sums of idempotent and nilpotent matrices”, Linear Algebra $\$ Appl., 605 (2020), 239–248 | DOI | Zbl

[5] P.V. Danchev, “Certain properties of square matrices over fields with applications to rings”, Rev. Colomb. Mat., 54 (2020), 109–116 | DOI | Zbl

[6] P.V. Danchev, “Representing matrices over fields as square-zero matrices and diagonal matrices”, Chebyshevskii Sbornik, 21 (2020), 84–88 (in Russian) | DOI | Zbl

[7] P. Danchev, E. Garcia, M.G. Lozano, “On some special matrix decompositions over fields and finite commutative rings”, Proceedings of the Fiftieth Spring Conference of the Union of Bulgarian Mathematicians, 50 (2021), 95–101

[8] P. Danchev, E. García, M.G. Lozano, “Decompositions of matrices into diagonalizable and square-zero matrices”, Linear $\$ Multilinear Algebra, 70 (2022) | DOI

[9] C. de Seguins Pazzis, “Sums of two triangularizable quadratic matrices over an arbitrary field”, Linear Algebra $\$ Appl., 436 (2012), 3293–3302 | DOI | Zbl

[10] E. García, M.G. Lozano, R.M. Alcázar, G. Vera de Salas, “A Jordan canonical form for nilpotent elements in an arbitrary ring”, Linear Algebra $\$ Appl., 581 (2019), 324–335 | DOI | Zbl

[11] D.A. Jaume, R. Sota, “On the core-nilpotent decomposition of trees”, Linear Algebra $\$ Appl., 563 (2019), 207–214 | DOI | Zbl

[12] Y. Shitov, “The ring $\mathbb{M}_{8k+4}(\mathbb{Z}_2)$ is nil-clean of index four”, Indag. Math. (N.S.), 30 (2019), 1077–1078 | DOI | Zbl

[13] J. Šter, “On expressing matrices over $\mathbb{Z}_2$ as the sum of an idempotent and a nilpotent”, Linear Algebra $\$ Appl., 544 (2018), 339–349 | DOI

[14] G. Tang, Y. Zhou, H. Su, “Matrices over a commutative ring as sums of three idempotents or three involutions”, Linear $\$ Multilinear Algebra, 67 (2019), 267–277 | DOI | Zbl