On some decompositions of matrices over algebraically closed and finite fields
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 547-553
Voir la notice de l'article provenant de la source Math-Net.Ru
Decomposition of every square matrix over an algebraically closed field or over a finite field into a sum of a potent matrix and a nilpotent matrix of order 2 is considered. This can be related to our recent paper, published in Linear Multilinear Algebra (2022).
The question of when each square matrix over an infinite field can be decomposed into a periodic matrix and a nilpotent matrix of order 2 is also completely considered.
Keywords:
field.
Mots-clés : nilpotent matrix, potent matrix, Jordan normal form, rational form
Mots-clés : nilpotent matrix, potent matrix, Jordan normal form, rational form
@article{JSFU_2021_14_5_a0,
author = {Peter Danchev},
title = {On some decompositions of matrices over algebraically closed and finite fields},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {547--553},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/}
}
TY - JOUR AU - Peter Danchev TI - On some decompositions of matrices over algebraically closed and finite fields JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 547 EP - 553 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/ LA - en ID - JSFU_2021_14_5_a0 ER -
%0 Journal Article %A Peter Danchev %T On some decompositions of matrices over algebraically closed and finite fields %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 547-553 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/ %G en %F JSFU_2021_14_5_a0
Peter Danchev. On some decompositions of matrices over algebraically closed and finite fields. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 547-553. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/