On some decompositions of matrices over algebraically closed and finite fields
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 547-553

Voir la notice de l'article provenant de la source Math-Net.Ru

Decomposition of every square matrix over an algebraically closed field or over a finite field into a sum of a potent matrix and a nilpotent matrix of order 2 is considered. This can be related to our recent paper, published in Linear Multilinear Algebra (2022). The question of when each square matrix over an infinite field can be decomposed into a periodic matrix and a nilpotent matrix of order 2 is also completely considered.
Keywords: field.
Mots-clés : nilpotent matrix, potent matrix, Jordan normal form, rational form
@article{JSFU_2021_14_5_a0,
     author = {Peter Danchev},
     title = {On some decompositions of matrices over algebraically closed and finite fields},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {547--553},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/}
}
TY  - JOUR
AU  - Peter Danchev
TI  - On some decompositions of matrices over algebraically closed and finite fields
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 547
EP  - 553
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/
LA  - en
ID  - JSFU_2021_14_5_a0
ER  - 
%0 Journal Article
%A Peter Danchev
%T On some decompositions of matrices over algebraically closed and finite fields
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 547-553
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/
%G en
%F JSFU_2021_14_5_a0
Peter Danchev. On some decompositions of matrices over algebraically closed and finite fields. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 547-553. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/