Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_5_a0, author = {Peter Danchev}, title = {On some decompositions of matrices over algebraically closed and finite fields}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {547--553}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/} }
TY - JOUR AU - Peter Danchev TI - On some decompositions of matrices over algebraically closed and finite fields JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 547 EP - 553 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/ LA - en ID - JSFU_2021_14_5_a0 ER -
%0 Journal Article %A Peter Danchev %T On some decompositions of matrices over algebraically closed and finite fields %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 547-553 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/ %G en %F JSFU_2021_14_5_a0
Peter Danchev. On some decompositions of matrices over algebraically closed and finite fields. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 547-553. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a0/
[1] A.N. Abyzov, I.I. Mukhametgaliev, “On some matrix analogues of the little Fermat theorem”, Mat. Zametki, 101 (2017), 187–192 | DOI | Zbl
[2] S. Breaz, “Matrices over finite fields as sums of periodic and nilpotent elements”, Linear Algebra $\$ Appl., 555 (2018), 92–97 | DOI | Zbl
[3] S. Breaz, G.Cǎlugǎreanu, P. Danchev, T. Micu, “Nil-clean matrix rings”, Linear Algebra $\$ Appl., 439 (2013), 3115–3119 | DOI | Zbl
[4] S. Breaz, S. Megiesan, “Nonderogatory matrices as sums of idempotent and nilpotent matrices”, Linear Algebra $\$ Appl., 605 (2020), 239–248 | DOI | Zbl
[5] P.V. Danchev, “Certain properties of square matrices over fields with applications to rings”, Rev. Colomb. Mat., 54 (2020), 109–116 | DOI | Zbl
[6] P.V. Danchev, “Representing matrices over fields as square-zero matrices and diagonal matrices”, Chebyshevskii Sbornik, 21 (2020), 84–88 (in Russian) | DOI | Zbl
[7] P. Danchev, E. Garcia, M.G. Lozano, “On some special matrix decompositions over fields and finite commutative rings”, Proceedings of the Fiftieth Spring Conference of the Union of Bulgarian Mathematicians, 50 (2021), 95–101
[8] P. Danchev, E. García, M.G. Lozano, “Decompositions of matrices into diagonalizable and square-zero matrices”, Linear $\$ Multilinear Algebra, 70 (2022) | DOI
[9] C. de Seguins Pazzis, “Sums of two triangularizable quadratic matrices over an arbitrary field”, Linear Algebra $\$ Appl., 436 (2012), 3293–3302 | DOI | Zbl
[10] E. García, M.G. Lozano, R.M. Alcázar, G. Vera de Salas, “A Jordan canonical form for nilpotent elements in an arbitrary ring”, Linear Algebra $\$ Appl., 581 (2019), 324–335 | DOI | Zbl
[11] D.A. Jaume, R. Sota, “On the core-nilpotent decomposition of trees”, Linear Algebra $\$ Appl., 563 (2019), 207–214 | DOI | Zbl
[12] Y. Shitov, “The ring $\mathbb{M}_{8k+4}(\mathbb{Z}_2)$ is nil-clean of index four”, Indag. Math. (N.S.), 30 (2019), 1077–1078 | DOI | Zbl
[13] J. Šter, “On expressing matrices over $\mathbb{Z}_2$ as the sum of an idempotent and a nilpotent”, Linear Algebra $\$ Appl., 544 (2018), 339–349 | DOI
[14] G. Tang, Y. Zhou, H. Su, “Matrices over a commutative ring as sums of three idempotents or three involutions”, Linear $\$ Multilinear Algebra, 67 (2019), 267–277 | DOI | Zbl