On the solvability of the identification problem for a source function in a quasilinear parabolic system of equations in bounded and unbounded domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 483-491.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of identification for a source function in one of two equations of parabolic quasilinear system. The case of Cauchy data in an unbounded domain and the case of boundary conditions of the first kind in a rectangular domain are considered. The question of the existence and uniqueness of the solution is studied. The proof uses a differential level splitting method known as the weak approximation method. The solution is obtained on a small time interval in the class of sufficiently smooth bounded functions.
Keywords: inverse problem, quasilinear equations system, source function determination, weak approximation method, small parameter.
@article{JSFU_2021_14_4_a9,
     author = {Vera G. Kopylova and Igor V. Frolenkov},
     title = {On the solvability of the identification problem for a source function in a quasilinear parabolic system of equations in bounded and unbounded domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {483--491},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a9/}
}
TY  - JOUR
AU  - Vera G. Kopylova
AU  - Igor V. Frolenkov
TI  - On the solvability of the identification problem for a source function in a quasilinear parabolic system of equations in bounded and unbounded domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 483
EP  - 491
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a9/
LA  - en
ID  - JSFU_2021_14_4_a9
ER  - 
%0 Journal Article
%A Vera G. Kopylova
%A Igor V. Frolenkov
%T On the solvability of the identification problem for a source function in a quasilinear parabolic system of equations in bounded and unbounded domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 483-491
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a9/
%G en
%F JSFU_2021_14_4_a9
Vera G. Kopylova; Igor V. Frolenkov. On the solvability of the identification problem for a source function in a quasilinear parabolic system of equations in bounded and unbounded domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 483-491. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a9/

[1] Yu.Ya.Belov, “An Identification Problem of Source Function for One Semievolutionary System”, Journal of Siberian Federal University, Series: Mathematics and Physics, 3:4 (2010), 487–499 | Zbl

[2] Yu.Ya.Belov, V.G. Kopylova, “Determination of Source Functions in Composite Type System of Equations”, Journal of Siberian Federal University, Series: Mathematics and Physics, 7:3 (2014), 275–288 | Zbl

[3] Yu.Ya.Belov, “An Identification Problem of Source Function in the System of Composite type”, Journal of Siberian Federal University. Mathematics and Physics, 4:4 (2011), 445–457 (in Russian) | Zbl

[4] Yu.Ya.Belov, V.G. Kopylova, “On some identification problem for source function to one semievolutionary system”, Journal of Inverse and Ill-posed Problems, 20:5–6 (2012), 723–743 | MR | Zbl

[5] N.N. Yanenko, Fractional steps for solving multidimensional problems of mathematical physics, Nauka, Novosibirsk, 1967 | MR | Zbl

[6] Yu.Ya.Belov, S.A. Cantor, The method of weak approximation, Krasnoyarsk State University, 1990

[7] L.V. Kantorovich, G.P. Akilov, Function analysis, Nauka, M., 1977 | MR

[8] Yu.Ya.Belov, K.V. Korshun, “An Identification Problem of Source Function in the Burgers-type Equation”, Journal of Siberian Federal University. Mathematics and Physics, 5:4 (2012), 497–506 | Zbl

[9] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekkar, Inc., New York, 1999 | MR

[10] V.G. Romanov, Inverse problems for differential equations, NGU, Novosibirsk, 1978 | MR