On some inverse parabolic problems with pointwise overdetermination
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 463-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering coefficients depending on time in a parabolic system. The overdetermination conditions are values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes.
Keywords: parabolic system, inverse problem, pointwise overdetermination
Mots-clés : convection-diffusion.
@article{JSFU_2021_14_4_a7,
     author = {Sergey G. Pyatkov and Vladislav A. Baranchuk},
     title = {On some inverse parabolic problems with pointwise overdetermination},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {463--474},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/}
}
TY  - JOUR
AU  - Sergey G. Pyatkov
AU  - Vladislav A. Baranchuk
TI  - On some inverse parabolic problems with pointwise overdetermination
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 463
EP  - 474
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/
LA  - en
ID  - JSFU_2021_14_4_a7
ER  - 
%0 Journal Article
%A Sergey G. Pyatkov
%A Vladislav A. Baranchuk
%T On some inverse parabolic problems with pointwise overdetermination
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 463-474
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/
%G en
%F JSFU_2021_14_4_a7
Sergey G. Pyatkov; Vladislav A. Baranchuk. On some inverse parabolic problems with pointwise overdetermination. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 463-474. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/

[1] G.I. Marchuk, Mathematical Models in Environmental Problems, Studies in Mathematics and its Applications, 16, Elsevier Science Publishers, Amsterdam, 1986 | MR

[2] M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer, Taylor Francis, New York, 2000 | MR

[3] O.M. Alifanov, E.A. Artyukhov, A.V. Nenarokom, Inverse problems of complex heat transfer, Yanus-K, M., 2009 (in Russian)

[4] A.I. Prilepko, V V. Solov'ev, “Solvability theorems and Rothe's method for inverse problems for a parabolic equation. I”, Differ. Equations, 23:10 (1987), 1230–1237 | Zbl

[5] V.V. Solov'ev, “Global existence of a solution to the inverse problem of determining the source term in a quasilinear equation of parabolic type”, Differ. Equations, 32:4 (1996), 538–547 | MR

[6] A.I. Prilepko, V.V. Solov'ev, “Solvability of the inverse boundary-value problem of finding a coefficient of a lower-order derivative in a parabolic equation”, Differ. Equations, 23:1 (1987), 101–107 | Zbl

[7] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc., New-York, 1999 | MR

[8] M.A. Kuliev, “Multidimensional inverse problem for a multidimensional parabolic equation in a bounded domain”, Nonlinear boundary value problem, 14 (2004), 138–145 (in Russian) | MR | Zbl

[9] O.A. Afinogenova, Yu.Ya. Belov, I.V. Frolenkov, “Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation”, Doklady Mathematics, 79:1 (2009), 70–72 | DOI | MR | Zbl

[10] Yu.Ya. Belov, K.V. Korshun, “An identification problem of source function in the Burgers-type equation”, J. Sib. Fed. Univ., Math. Phys., 5:4 (2012), 497–506 (in Russian) | Zbl

[11] M.S. Hussein, D. Lesnic, M.I. Ivanchov, “Simultaneous determination of time-dependent coefficients in the heat equation”, Computers and Mathematics with Applications, 67 (2014), 1065–1091 | DOI | MR | Zbl

[12] N.I. Ivanchov, N.V. Pabyrivska, “On Determination of Two Time-Dependent Coefficients in a Parabolic Equation”, Siberian Mathematical Journal, 43:2 (2002), 323–329 | DOI | MR | Zbl

[13] D. Lesnic, M. Ivanchov, “Determination of the time-dependent perfusion coefficient in the bio-heat equation”, Applied mathematics letters, 39 (2015), 96–100 | DOI | MR | Zbl

[14] M.S. Hussein, D. Lesnic, “Identification of time-dependent conductivity of an diffusive material”, Applied mathematics and computations, 269 (2015), 35–58 | DOI | MR | Zbl

[15] M. Ivanchov, Inverse Problems for Equation of Parabolic Type, Math. Studies. Monograph Series, 10, WNTL Publishers, Lviv, 2003 | MR

[16] Ya.Ya. Belov, Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002 | MR

[17] S.G. Pyatkov, V.V. Rotko, “On some parabolic inverse problems with the pointwise overdetermination”, AIP Conference Proceedings, 1907, 2017, 020008 | DOI

[18] V.A. Baranchuk, S.G. Pyatkov, “On some clases of inverse problems with pointwise overdetermination for mathematical models of heat and nass transfer”, Bulletin of Yugra State University, 3 (2020), 38–48 (in Russian)

[19] A.V. Mamonov, Y-H.R. Tsai, “Point source identification in nonlinear advection-diffusion-reaction systems”, Inverse Problems, 29:3 (2013), 035009 | DOI | MR | Zbl

[20] H. Tribel, Interpolation Theory. Function Spaces. Differential Operators, Johann Ambrosius Barth, Heidelberg, 1972 | MR

[21] R. Denk, M. Hieber, J. Prüss, “Optimal $L_{p}-L_{q}$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl

[22] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, American Math. Society, Providence, R.I., 1968 | MR

[23] O.A. Ladyzhenskaya, V. Ya.Rivkind, N. N. Ural'tseva, “Classical solvability of diffraction problems in the case of elliptic and parabolic equations”, Sov. Math., Dokl., 5 (1965), 1249–1252

[24] H. Amann, Linear and Quasilinear Parabolic Problems, v. I, Monographs in Mathematics, 89, Birkhauser Verlag, Basel, etc., 1995 | MR | Zbl

[25] H. Amann, “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glasnik Mat., Ser. III, 35(55):1 (2000), 161–177 | MR | Zbl