Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_4_a7, author = {Sergey G. Pyatkov and Vladislav A. Baranchuk}, title = {On some inverse parabolic problems with pointwise overdetermination}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {463--474}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/} }
TY - JOUR AU - Sergey G. Pyatkov AU - Vladislav A. Baranchuk TI - On some inverse parabolic problems with pointwise overdetermination JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 463 EP - 474 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/ LA - en ID - JSFU_2021_14_4_a7 ER -
%0 Journal Article %A Sergey G. Pyatkov %A Vladislav A. Baranchuk %T On some inverse parabolic problems with pointwise overdetermination %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 463-474 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/ %G en %F JSFU_2021_14_4_a7
Sergey G. Pyatkov; Vladislav A. Baranchuk. On some inverse parabolic problems with pointwise overdetermination. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 463-474. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a7/
[1] G.I. Marchuk, Mathematical Models in Environmental Problems, Studies in Mathematics and its Applications, 16, Elsevier Science Publishers, Amsterdam, 1986 | MR
[2] M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer, Taylor Francis, New York, 2000 | MR
[3] O.M. Alifanov, E.A. Artyukhov, A.V. Nenarokom, Inverse problems of complex heat transfer, Yanus-K, M., 2009 (in Russian)
[4] A.I. Prilepko, V V. Solov'ev, “Solvability theorems and Rothe's method for inverse problems for a parabolic equation. I”, Differ. Equations, 23:10 (1987), 1230–1237 | Zbl
[5] V.V. Solov'ev, “Global existence of a solution to the inverse problem of determining the source term in a quasilinear equation of parabolic type”, Differ. Equations, 32:4 (1996), 538–547 | MR
[6] A.I. Prilepko, V.V. Solov'ev, “Solvability of the inverse boundary-value problem of finding a coefficient of a lower-order derivative in a parabolic equation”, Differ. Equations, 23:1 (1987), 101–107 | Zbl
[7] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc., New-York, 1999 | MR
[8] M.A. Kuliev, “Multidimensional inverse problem for a multidimensional parabolic equation in a bounded domain”, Nonlinear boundary value problem, 14 (2004), 138–145 (in Russian) | MR | Zbl
[9] O.A. Afinogenova, Yu.Ya. Belov, I.V. Frolenkov, “Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation”, Doklady Mathematics, 79:1 (2009), 70–72 | DOI | MR | Zbl
[10] Yu.Ya. Belov, K.V. Korshun, “An identification problem of source function in the Burgers-type equation”, J. Sib. Fed. Univ., Math. Phys., 5:4 (2012), 497–506 (in Russian) | Zbl
[11] M.S. Hussein, D. Lesnic, M.I. Ivanchov, “Simultaneous determination of time-dependent coefficients in the heat equation”, Computers and Mathematics with Applications, 67 (2014), 1065–1091 | DOI | MR | Zbl
[12] N.I. Ivanchov, N.V. Pabyrivska, “On Determination of Two Time-Dependent Coefficients in a Parabolic Equation”, Siberian Mathematical Journal, 43:2 (2002), 323–329 | DOI | MR | Zbl
[13] D. Lesnic, M. Ivanchov, “Determination of the time-dependent perfusion coefficient in the bio-heat equation”, Applied mathematics letters, 39 (2015), 96–100 | DOI | MR | Zbl
[14] M.S. Hussein, D. Lesnic, “Identification of time-dependent conductivity of an diffusive material”, Applied mathematics and computations, 269 (2015), 35–58 | DOI | MR | Zbl
[15] M. Ivanchov, Inverse Problems for Equation of Parabolic Type, Math. Studies. Monograph Series, 10, WNTL Publishers, Lviv, 2003 | MR
[16] Ya.Ya. Belov, Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002 | MR
[17] S.G. Pyatkov, V.V. Rotko, “On some parabolic inverse problems with the pointwise overdetermination”, AIP Conference Proceedings, 1907, 2017, 020008 | DOI
[18] V.A. Baranchuk, S.G. Pyatkov, “On some clases of inverse problems with pointwise overdetermination for mathematical models of heat and nass transfer”, Bulletin of Yugra State University, 3 (2020), 38–48 (in Russian)
[19] A.V. Mamonov, Y-H.R. Tsai, “Point source identification in nonlinear advection-diffusion-reaction systems”, Inverse Problems, 29:3 (2013), 035009 | DOI | MR | Zbl
[20] H. Tribel, Interpolation Theory. Function Spaces. Differential Operators, Johann Ambrosius Barth, Heidelberg, 1972 | MR
[21] R. Denk, M. Hieber, J. Prüss, “Optimal $L_{p}-L_{q}$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl
[22] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, American Math. Society, Providence, R.I., 1968 | MR
[23] O.A. Ladyzhenskaya, V. Ya.Rivkind, N. N. Ural'tseva, “Classical solvability of diffraction problems in the case of elliptic and parabolic equations”, Sov. Math., Dokl., 5 (1965), 1249–1252
[24] H. Amann, Linear and Quasilinear Parabolic Problems, v. I, Monographs in Mathematics, 89, Birkhauser Verlag, Basel, etc., 1995 | MR | Zbl
[25] H. Amann, “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glasnik Mat., Ser. III, 35(55):1 (2000), 161–177 | MR | Zbl