Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 452-462.

Voir la notice de l'article provenant de la source Math-Net.Ru

The global solvability of the inhomogeneous mixed boundary value problem and control problems for the reaction–diffusion–convection equation are proved in the case when the reaction coefficient nonlinearly depends on the concentration. The maximum and minimum principles are established for the solution of the boundary value problem. The optimality systems are derived and the local stability estimates of optimal solutions are established for control problems with specific reaction coefficients.
Keywords: nonlinear reaction–diffusion–convection equation, mixed boundary conditions, maximum principle, control problems, optimality systems, local stability estimates.
@article{JSFU_2021_14_4_a6,
     author = {Gennady V. Alekseev and Roman V. Brizitskii},
     title = {Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {452--462},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/}
}
TY  - JOUR
AU  - Gennady V. Alekseev
AU  - Roman V. Brizitskii
TI  - Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 452
EP  - 462
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/
LA  - en
ID  - JSFU_2021_14_4_a6
ER  - 
%0 Journal Article
%A Gennady V. Alekseev
%A Roman V. Brizitskii
%T Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 452-462
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/
%G en
%F JSFU_2021_14_4_a6
Gennady V. Alekseev; Roman V. Brizitskii. Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 452-462. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/

[1] Yu.Ya.Belov, “Inverse problems for parabolic equations”, J. Inv. Ill-Posed Probl., 1:4 (1993), 283–306 | MR

[2] K. Ito, K. Kunish, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 14 (1997), 995–1013 | DOI | MR

[3] Yu.Ya.Belov, T.N. Shipina, “The problem of determining a coefficient in the parabolic equation and some properties of its solution”, J. Inv. Ill-Posed Probl., 9:1 (2001), 31–48 | MR | Zbl

[4] G.V. Alekseev, D.A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inv. Ill-Posed Probl., 6:6 (1998), 521–562 | MR | Zbl

[5] G.V. Alekseev, E.A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Probl., 9:5 (2001), 435–468 | MR | Zbl

[6] P.A. Nguyen, J.-P. Raymond, “Control problems for convection–diffusion equations with control localized on manifolds”, ESAIM: Control, Optimisation and Calculus of Variations, 6 (2001), 467–488 | DOI | MR | Zbl

[7] G.V. Alekseev, O.V. Soboleva, D.A. Tereshko, “Identification problems for a steady-sate model of mass transfer”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 537–547 | DOI | MR | Zbl

[8] G.V. Alekseev, V.G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, Journal of Applied and Industrial Mathematics, 6:1 (2012), 1–5 | DOI | MR | Zbl

[9] Yu.Ya. Belov, V.G. Kopylova, “On some identification problem for source function to one semievolutionary system”, J. Inv. Ill-Posed Probl., 20:5–6 (2012), 723–743 | DOI | MR | Zbl

[10] R.V. Brizitskii, Z.Y. Saritskaya, A.I. Byrganov, “Multiplicative control problems for nonlinear convection–diffusion–reaction equation”, Sib. El. Math. Rep., 13 (2016), 352–360 | DOI | MR | Zbl

[11] G.V. Alekseev, R.V. Brizitskii, Z.Y. Saritskaya, “Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation”, J. Appl. Industr. Math., 10:2 (2016), 155–167 | DOI | MR | Zbl

[12] R.V. Brizitskii, Z.Y. Saritskaya, “Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition”, Comp. Math. Math. Phys., 56:12 (2016), 2011–2022 | DOI | MR | Zbl

[13] R.V. Brizitskii, Z.Y. Saritskaya, “Stability of solutions of control problems for the convection–diffusion–reaction equation with a strong nonlinearity”, Dif. Eq., 53:4 (2017), 485–496 | DOI | MR | Zbl

[14] R.V. Brizitskii, Zh.Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, J. Inv. Ill-Posed Probl., 26:6 (2018), 821–833 | DOI | MR | Zbl

[15] G.V. Alekseev, “Stability estimates in the problem of cloaking material bodies for Maxwell's equations”, Comp. Math. Math. Phys., 54:12 (2014), 1788–1803 | DOI | MR | Zbl

[16] G.V. Alekseev, “Analysis and optimization in problems of cloaking of material bodies for the Maxwell equations”, Dif. Eq., 52:3 (2016), 361–372 | DOI | MR | Zbl

[17] A.E. Kovtanyuk, A.Y. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comp., 249 (2014), 247–252 | DOI | MR | Zbl

[18] A.E. Kovtanyuk, A. Yu.Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689 | DOI | MR | Zbl

[19] Mir, M., 1972 | MR

[20] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968 | MR | Zbl

[21] D. Gilbarg, M. Trudinger, Elliptic partial differential equations of second order, Springer, 1984 | MR

[22] H. Berninger, “Non-overlapping domain decomposition for the Richards equation via superposition operators”, Domain Decomposition Methods in Science and Engineering XVIII, Springer, 2009, 169–176 | DOI | MR | Zbl

[23] A.V. Fursikov, Optimal control of distributed systems. Theory and applications, American Mathematical Society, 2000 | MR | Zbl