Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_4_a6, author = {Gennady V. Alekseev and Roman V. Brizitskii}, title = {Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {452--462}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/} }
TY - JOUR AU - Gennady V. Alekseev AU - Roman V. Brizitskii TI - Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 452 EP - 462 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/ LA - en ID - JSFU_2021_14_4_a6 ER -
%0 Journal Article %A Gennady V. Alekseev %A Roman V. Brizitskii %T Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 452-462 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/ %G en %F JSFU_2021_14_4_a6
Gennady V. Alekseev; Roman V. Brizitskii. Analysis of the boundary value and control problems for nonlinear reaction--diffusion--convection equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 452-462. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a6/
[1] Yu.Ya.Belov, “Inverse problems for parabolic equations”, J. Inv. Ill-Posed Probl., 1:4 (1993), 283–306 | MR
[2] K. Ito, K. Kunish, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 14 (1997), 995–1013 | DOI | MR
[3] Yu.Ya.Belov, T.N. Shipina, “The problem of determining a coefficient in the parabolic equation and some properties of its solution”, J. Inv. Ill-Posed Probl., 9:1 (2001), 31–48 | MR | Zbl
[4] G.V. Alekseev, D.A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inv. Ill-Posed Probl., 6:6 (1998), 521–562 | MR | Zbl
[5] G.V. Alekseev, E.A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Probl., 9:5 (2001), 435–468 | MR | Zbl
[6] P.A. Nguyen, J.-P. Raymond, “Control problems for convection–diffusion equations with control localized on manifolds”, ESAIM: Control, Optimisation and Calculus of Variations, 6 (2001), 467–488 | DOI | MR | Zbl
[7] G.V. Alekseev, O.V. Soboleva, D.A. Tereshko, “Identification problems for a steady-sate model of mass transfer”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 537–547 | DOI | MR | Zbl
[8] G.V. Alekseev, V.G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, Journal of Applied and Industrial Mathematics, 6:1 (2012), 1–5 | DOI | MR | Zbl
[9] Yu.Ya. Belov, V.G. Kopylova, “On some identification problem for source function to one semievolutionary system”, J. Inv. Ill-Posed Probl., 20:5–6 (2012), 723–743 | DOI | MR | Zbl
[10] R.V. Brizitskii, Z.Y. Saritskaya, A.I. Byrganov, “Multiplicative control problems for nonlinear convection–diffusion–reaction equation”, Sib. El. Math. Rep., 13 (2016), 352–360 | DOI | MR | Zbl
[11] G.V. Alekseev, R.V. Brizitskii, Z.Y. Saritskaya, “Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation”, J. Appl. Industr. Math., 10:2 (2016), 155–167 | DOI | MR | Zbl
[12] R.V. Brizitskii, Z.Y. Saritskaya, “Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition”, Comp. Math. Math. Phys., 56:12 (2016), 2011–2022 | DOI | MR | Zbl
[13] R.V. Brizitskii, Z.Y. Saritskaya, “Stability of solutions of control problems for the convection–diffusion–reaction equation with a strong nonlinearity”, Dif. Eq., 53:4 (2017), 485–496 | DOI | MR | Zbl
[14] R.V. Brizitskii, Zh.Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, J. Inv. Ill-Posed Probl., 26:6 (2018), 821–833 | DOI | MR | Zbl
[15] G.V. Alekseev, “Stability estimates in the problem of cloaking material bodies for Maxwell's equations”, Comp. Math. Math. Phys., 54:12 (2014), 1788–1803 | DOI | MR | Zbl
[16] G.V. Alekseev, “Analysis and optimization in problems of cloaking of material bodies for the Maxwell equations”, Dif. Eq., 52:3 (2016), 361–372 | DOI | MR | Zbl
[17] A.E. Kovtanyuk, A.Y. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comp., 249 (2014), 247–252 | DOI | MR | Zbl
[18] A.E. Kovtanyuk, A. Yu.Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689 | DOI | MR | Zbl
[19] Mir, M., 1972 | MR
[20] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968 | MR | Zbl
[21] D. Gilbarg, M. Trudinger, Elliptic partial differential equations of second order, Springer, 1984 | MR
[22] H. Berninger, “Non-overlapping domain decomposition for the Richards equation via superposition operators”, Domain Decomposition Methods in Science and Engineering XVIII, Springer, 2009, 169–176 | DOI | MR | Zbl
[23] A.V. Fursikov, Optimal control of distributed systems. Theory and applications, American Mathematical Society, 2000 | MR | Zbl