Fast modelling of tsunami wave propagation using PC with hardware computer code acceleration
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 433-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

The field programmable gates array (FPGA) microchip is applied to achieve considerable performance gain in simulation of tsunami wave propagation using personal computer. The two-step Mac-Cormack scheme was used for approximation of the shallow water equations. An idea of PC-based tsunami wave propagation simulation is described. Comparison with the available analytic solutions and numerical results obtained with the reference code show that developed approach provides good accuracy in simulations. It takes less then 1 minute to compute 1 hour of the wave propagation in computational domain that contains 3000 $\times$ 2500 nodes. Using the nested greed approach, it is possible to decrease the size of space step from about 300 meters to 10 m. Using the proposed approach, the entire computational process (to calculate the wave propagation from the source area to the coast) takes about 2 min. As an example the distribution of maximal heights of tsunami wave along the coast of the Southern part of Japan is simulated. In particular, the interrelation between maximal wave heights and location of tsunami source is studied. Model sources of size 100 $\times$ 200 km have realistic parameters for this region. It was found that only selected parts of the entire coast line are exposed to tsunami wave with dangerous height. However, the occurrence of extreme tsunami wave heights at some of those areas can be attributed to the local bathymetry. The proposed hardware acceleration to compute tsunami wave propagation can be used for rapid (say, during few minutes) evaluation of danger from tsunami wave for a particular location of the coast.
Keywords: numerical modelling, computer code acceleration.
Mots-clés : tsunami wave propagation
@article{JSFU_2021_14_4_a4,
     author = {Mikhail M. Lavrentiev and Andrey G. Marchuk},
     title = {Fast modelling of tsunami wave propagation using {PC} with hardware computer code acceleration},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {433--444},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a4/}
}
TY  - JOUR
AU  - Mikhail M. Lavrentiev
AU  - Andrey G. Marchuk
TI  - Fast modelling of tsunami wave propagation using PC with hardware computer code acceleration
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 433
EP  - 444
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a4/
LA  - en
ID  - JSFU_2021_14_4_a4
ER  - 
%0 Journal Article
%A Mikhail M. Lavrentiev
%A Andrey G. Marchuk
%T Fast modelling of tsunami wave propagation using PC with hardware computer code acceleration
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 433-444
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a4/
%G en
%F JSFU_2021_14_4_a4
Mikhail M. Lavrentiev; Andrey G. Marchuk. Fast modelling of tsunami wave propagation using PC with hardware computer code acceleration. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 433-444. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a4/

[1] H. Tsushima, Y. Yusaku, “Review on Near-Field Tsunami Forecasting from Offshore Tsunami Data and Onshore GNSS Data for Tsunami Early Warning”, J. Disaster Res., 9:3 (2014), 339–357 | DOI

[2] E. Gica, M. Spillane, V. Titov, C. Chamberlin, J. Newman, Development of the forecast propagation database for NOAA's short-term inundation forecast for tsunamis (SIFT), NOAA Technical Memorandum, 2008 (access date: 15.06.2016) http://www.ndbc.noaa.gov/dart.shtml | Zbl

[3] H. Kensaku, A.P. Vazhenin, A.G. Marchuk, “Trans-Boundary Realization of the Nested-Grid Method for Tsunami Propagation Modeling”, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference (Kona, Big Island, Hawaii, USA), v. 3, 2015, 741–747

[4] V. Titov, F. Gonzalez, Implementation and testing of the method of splitting tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112, 1997

[5] N. Shuto, C. Goto, F. Imamura, “Numerical simulation as a means of warning for near field tsunamis”, Coastal Engineering in Japan, 33:2 (1990), 173–193 | DOI

[6] A.C. Yalciner, B. Alpar, Y. Altinok, I. Ozbay, F. Imamura, “Tsunamis in the Sea of Marmara: Historical Documents for the Past, Models for Future”, Marine Geology, 190 (2002), 445–463 | DOI

[7] M.M. Lavrentiev, A.A. Romanenko, K.K. Oblaukhov, An.G. Marchuk, K.F. Lysakov, M. Yu.Shadrin, “FPGA Based Solution for Fast Tsunami Wave Propagation Modeling”, The 27th International Ocean and Polar Engineering Conference (2017, 25–30 June, San Francisco, California, USA), 924–929

[8] M.M. Lavrentiev, K.F. Lysakov, An.G. Marchuk, K.K. Oblaukhov, M. Yu.Shadrin, “Hardware Acceleration of Tsunami Wave Propagation Modeling in the Southern Part of Japan”, Appl. Sci., 10:12 (2020), 4159 | DOI

[9] M.M. Lavrentiev, An.G. Marchuk, K.K. Oblaukhov, A. A. Romanenko, “Comparative testing of MOST and Mac-Cormack numerical schemes to calculate tsunami wave propagation”, J. Phys.: Conf. Ser., 1666 (2020), 012028 | DOI

[10] M.M. Lavrentiev, A.A. Romanenko, K.K. Oblaukhov, An.G. Marchuk, K.F. Lysakov, M. Yu.Shadrin, “Implementation of Mac-Cormack scheme for the fast calculation of tsunami wave propagation”, Oceans'17 MTS/IEEE (Aberdeen, June 19–22 2017)

[11] M.M. Lavrentiev, K.F. Lysakov, An.G. Marchuk, K.K. Oblaukhov, M. Yu.Shadrin, “Fast evaluation of tsunami waves heights around Kamchanka and Kuril Islands”, Science of Tsunami Hazards, 38:1 (2019), 1–13 | MR

[12] M. Lavrentiev, K. Lysakov, An.Marchuk, K. Oblaukhov, M. Shadrin, “FPGA-based Modelling of the Tsunami Wave Propagation at South Japan Water Area”, Proc. OCEANS'18 MTS/IEEE (Kobe, Japan, May 28–31 2018)

[13] M.M. Lavrentiev, K.F. Lysakov, An.G. Marchuk, K.K. Oblaukhov, M. Yu.Shadrin, “FPGA Based Tsunami Wave Propagation Calculator”, J. Phys.: Conf. Ser., 1789 (2021), 012011 | DOI

[14] M.M. Lavrentiev, K.F. Lysakov, An.G. Marchuk, K.K. Oblaukhov, M. Yu.Shadrin, “FPGA based modeling of Tohoku tsunami using nested grids”, Proceedings of the Global Oceans 2020 (Singapore – U.S. Gulf Coast October 5–14, 2020)

[15] R.W. MacCormack, A.J. Paullay, Computational Efficiency Achieved by Time Splitting of Finite–Difference Operators, AIAA paper 72-154, 1972 | DOI

[16] An.G. Marchuk, “Benchmark solutions for tsunami wave fronts and rays. Part 2: Parabolic bottom topography”, Science of Tsunami Hazards, 36:2 (2017), 70–85

[17] An.G. Marchuk, “Estimating Tsunami Wave Height over a Sloping Bottom in the Ray Approximation”, Numerical Analysis and Applications, 8:4 (2015), 304–313 | DOI | MR | Zbl

[18] An.G. Marchuk, “Benchmark solutions for tsunami wave fronts and rays. Part 1: sloping bottom topography”, Science of Tsunami Hazards, 35:2 (2016), 34–48

[19] https://jdoss1.jodc.go.jp/vpage/depth500_file.html