Inverse problems of finding the lowest coefficient in the elliptic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 528-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of problems of finding the non-negative coefficient $q(t)$ in the elliptic equation $$u_{tt}+a^2\Delta u-q(t)u=f(x,t)$$ ($x=(x_1,\ldots,x_n)\in\Omega\subset \mathbb{R}^n$, $t\in (0,T)$, $0$, $\Delta$ — operator Laplace on $x_1, \ldots, x_n$). These problems contain the usual boundary conditions and additional condition ( spatial integral overdetermination condition or boundary integral overdetermination condition). The theorems of existence and uniqueness are proved.
Keywords: unknown coefficient, spatial integral condition, boundary integral condition, uniqueness.
Mots-clés : elliptic equation, existence
@article{JSFU_2021_14_4_a14,
     author = {Alexander I. Kozhanov and Tatyana N. Shipina},
     title = {Inverse problems of finding the lowest coefficient in the elliptic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {528--542},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a14/}
}
TY  - JOUR
AU  - Alexander I. Kozhanov
AU  - Tatyana N. Shipina
TI  - Inverse problems of finding the lowest coefficient in the elliptic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 528
EP  - 542
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a14/
LA  - en
ID  - JSFU_2021_14_4_a14
ER  - 
%0 Journal Article
%A Alexander I. Kozhanov
%A Tatyana N. Shipina
%T Inverse problems of finding the lowest coefficient in the elliptic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 528-542
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a14/
%G en
%F JSFU_2021_14_4_a14
Alexander I. Kozhanov; Tatyana N. Shipina. Inverse problems of finding the lowest coefficient in the elliptic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 528-542. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a14/

[1] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 1999 | MR

[2] A.I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[3] Yu.Ya.Belov, Inverse Problems for Partial Differntial Equations, VSP, Utrecht, 2002 | MR

[4] M.M. Lavrentiev, Inverse Problems of Mathematical Physics, VSP, Utrecht, 2003 | MR | Zbl

[5] M. Ivanchov, Inverse Problems for Equations of Parabolic Type, WNTL Publishers, Lviv, 2003 | MR

[6] S.I. Kabanikhin, Inverse and Ill-Posed Problems Novosibirsk, Siberian book publishing house, 2009 (in Russian)

[7] V. Isakov, Inverse Problems for Partial Differential Equations, Springer Verlag, 2009 | MR

[8] H.A. Hasanov, V.G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer, 2017 | MR | Zbl

[9] A.I. Prilepko, A.B. Kostin, “On certain inverse problems for parabolic equations with final and integral observation”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 473–490 | DOI | MR

[10] A.I. Prilepko, A.B. Kostin, “Inverse problems of determining the coefficient in a parabolic equation. I”, Siberian Math. J., 33:3 (1992), 489–496 ; “Inverse problems of determining the coefficient in a parabolic equation. II”, Siberian Math. J., 34:5 (1993), 923–937 | DOI | MR | Zbl | DOI | MR | Zbl

[11] A.I. Kozhanov, “Nonlinear loaded equations and inverse problems”, Comput. Math. Math. Phys., 44:4 (2004), 657–675 | MR

[12] A.I. Kozhanov, R.R. Safiullova, “Linear Inverse Problems for Parabolic and Hyperbolic Equations”, J. of Inverse and Ill–Posed Problems, 18:1 (2010), 1–18 | DOI | MR | Zbl

[13] S.G. Pyatkov, “On some classes of inverse problems with overdetermination data on spatial manifolds”, Siberian Math. J., 57:5 (2016), 870–880 | DOI | MR | Zbl

[14] A.I. Kozhanov, “Inverse problems of recovering the right-hand side of special type in a parabolic equation”, Mat. Zametki of North-Eastern Federal University, 23:4 (2016), 31–45 (in Russian) | Zbl

[15] D.G. Orlovskii, “Inverse Dirichlet problem for an equation of elliptic type”, Differential Equations, 44 (2008), 124–134 | DOI | MR | Zbl

[16] S.G. Pyatkov, “On some inverse problems for elliptic equations and systems”, J. Appl. Industr. Math., 5:3 (2011), 417–430 | DOI | MR

[17] V.V. Solov'ev, Inverse Problems for Equations of Elliptic and Parabolic Types in Hölder's Spaces, Diss. Dokt. Fiz.-Mat. Nauk, MIFI, M., 2014 (in Russian)

[18] Ch. Ashyraliev, G. Akunz, M. Dedeturk, “Approximate Solution for an Inverse Problem of Multidimensional Elliptic Equation with Multipoint Nonlocal and Neumann Boundary Conditions”, Electronic Journal of Differential Equations, 19 (2017), 1–16 | MR

[19] I.A. Kozhanov, T.N. Shipina, “Loaded Differential Equations and Linear Inverse Problems for Elliptic Equations”, Complex Variables and Elliptic Equations, 2020 | DOI | MR

[20] S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence, 1991 | MR | Zbl

[21] O.A. Ladyzhenskya, N.N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York–London, 1968 | MR

[22] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North–Holland Publ., Amsterdam, 1978 | MR | Zbl

[23] M.T. Dzhenaliev, To the Theory Of Linear Boundary Value Problems for Loaded Differential Equation, Kompyut. Tsentr ITPM, Almaty, 1995 (in Russian) | MR

[24] A.M. Nakhushev, Loaded Equations and Theie Applications, Nauka, M., 2012 (in Russian)

[25] V.A. Trenogin, Functional Analysis, Nauka, M., 1980 (in Russian) | MR | Zbl