Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_4_a12, author = {Victor K. Andreev and Natalya L. Sobachkina}, title = {Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {507--518}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a12/} }
TY - JOUR AU - Victor K. Andreev AU - Natalya L. Sobachkina TI - Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 507 EP - 518 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a12/ LA - en ID - JSFU_2021_14_4_a12 ER -
%0 Journal Article %A Victor K. Andreev %A Natalya L. Sobachkina %T Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 507-518 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a12/ %G en %F JSFU_2021_14_4_a12
Victor K. Andreev; Natalya L. Sobachkina. Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 507-518. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a12/
[1] A. Adamson, Physical chemistry of surfaces, Mir, M., 1979 (in Russian)
[2] J.F. Harper, D.W. Moor, J.R.A. Pearson, “The effect of the variation of surface tension with temperature on the motion of drops and bubbles”, J. Fluid Mech., 27 (1967), 361 | DOI
[3] F.E. Torres, E. Helborzheimer, “Temperature gradients and drag effects produced by convections of interfacial internal energy around bubbles”, Phys. Fluids A, 5:3 (1993), 537–549 | DOI | Zbl
[4] V.K. Andreev, E.P. Magdenko, “Two-dimensional stationary flow of immiscible fluids in a cylinder taking into account the internal energy of the interface”, J. Phys.: Conf. Ser., 1268 (2019), 012045 | DOI | MR
[5] E.P. Magdenko, “The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder”, Journal of Siberian Federal University. Mathematics and Physics, 12:2 (2019), 213–221 | DOI | MR | Zbl
[6] V.K. Andreev, V.E. Zachvataev, E.A. Ryabitskiy, Thermocapillary instability, Nauka, Novosibirsk, 2000 (in Russian) | MR
[7] K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Politech. J., 326 (1911), 321
[8] V.K. Andreev, V.B. Bekezhanova, Stability of non-isothermal liquids, monograph, Siberian Federal University, Krasnoyarsk, 2010 (in Russian)
[9] L.G. Napolitano, “Plane Marangoni-Poiseulle flow two immiscible fluids”, Acta Astronautica, 7:4–5 (1980), 461–478 | DOI | Zbl
[10] V.V. Pukhnachev, Motion of a viscous fluid with free boundaries, a textbook, Novosibirsk, 1989 (in Russian) | MR | Zbl
[11] K. Fletcher, Numerical methods based on the Galerkin method, Mir, M., 1988 (in Russian) | MR
[12] Yu.Luk, Special mathematical functions and their approximations, Mir, M., 1980 (in Russian) | MR
[13] N.L. Sobachkina, Solution of initial-boundary value problems on the motion of binary mixtures in cylindrical domains, Diss. ... cand. fiz.-mat. sciences, Siberian Federal University, Krasnoyars, 2009 (in Russian)