Removable singularities of separately harmonic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 369-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

Removable singularities of separately harmonic functions are considered. More precisely, we prove harmonic continuation property of a separately harmonic function $u(x,y)$ in $D\setminus S$ to the domain $D$, when $D\subset\mathbb{R}^n(x)\times\mathbb{R}^m(y)$, $n,m>1$ and $S$ is a closed subset of the domain $D$ with nowhere dense projections $S_1=\{x\in\mathbb{R}^n:(x,y)\in S\}$ and $S_2=\{y\in\mathbb{R}^m:(x,y)\in S\}$.
Keywords: separately harmonic function, $\mathcal P$-measure.
Mots-clés : pseudoconvex domain, Poisson integral
@article{JSFU_2021_14_3_a9,
     author = {Sevdiyor A. Imomkulov and Sultanbay M. Abdikadirov},
     title = {Removable singularities of separately harmonic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {369--375},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/}
}
TY  - JOUR
AU  - Sevdiyor A. Imomkulov
AU  - Sultanbay M. Abdikadirov
TI  - Removable singularities of separately harmonic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 369
EP  - 375
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/
LA  - en
ID  - JSFU_2021_14_3_a9
ER  - 
%0 Journal Article
%A Sevdiyor A. Imomkulov
%A Sultanbay M. Abdikadirov
%T Removable singularities of separately harmonic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 369-375
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/
%G en
%F JSFU_2021_14_3_a9
Sevdiyor A. Imomkulov; Sultanbay M. Abdikadirov. Removable singularities of separately harmonic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 369-375. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/

[1] B.V. Shabat, Introduction to Complex Analysis, v. II, Nauka, Fiz. Mat. Lit., M., 1985 (in Russian)

[2] R. Gunning, H. Rossi, Analytic functions of several complex variables, Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, 1965

[3] S. Hamano, “Hartogs-Osgud theorem for separately harmonic functions”, Proc. Japan Acad. A, 83 (2007), 16–18 | DOI

[4] P. Lelong, “Fonctions plurisousharmoniques et fonctions analytiques de variables reelles”, Ann. Inst. Fourier. Paris, 11 (1961), 515–562

[5] A. Sadullaev, S.A. Imomkulov, “Extension of holomorphic and pluriharmonic functions with subtle singularities on parallel sections”, Proc. Steklov Inst. Math., 253 (2006), 144–159 | DOI

[6] A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds”, UMN, 36:4 (1981), 53–105

[7] A. Sadullaev, “Plurisubharmonic functions”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 8, 1985, 65–111 (in Russian)

[8] V. Zakharyuta, “Separate-analytic functions, generalized Hartogs theorems and hulls of holomorphy”, Math. Coll., 101:1 (1976), 57–76

[9] J. Siĉiak, “Separately analytic functions and envelopes of holomorphy of some lowerdimensional subsets of $\mathbb{C}^n$”, Ann. Pol. Math., 22:1 (1969), 145–171

[10] E. Bedford, B.A. Taylor, “A new capacity for plurisubharmonic functions”, Acta. Math., 149 (1982), 1–40

[11] V. Avanissian, Cellule d'Harmonicite et Prolongement Analitique Complexe, Travaux en cours, Hermann, Paris, 1985

[12] W. Plesniak, “A criterion of the $L$-regulerity of compact sets in $\mathbb{C}^n$”, Zeszyty Neuk. Uniw. Jagiello, 21 (1979), 97–103

[13] B. Mityagin, “Approximate dimension and bases in nuclear spaces”, Russian Math. Surveys, 16:4 (1961), 59–127