Removable singularities of separately harmonic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 369-375

Voir la notice de l'article provenant de la source Math-Net.Ru

Removable singularities of separately harmonic functions are considered. More precisely, we prove harmonic continuation property of a separately harmonic function $u(x,y)$ in $D\setminus S$ to the domain $D$, when $D\subset\mathbb{R}^n(x)\times\mathbb{R}^m(y)$, $n,m>1$ and $S$ is a closed subset of the domain $D$ with nowhere dense projections $S_1=\{x\in\mathbb{R}^n:(x,y)\in S\}$ and $S_2=\{y\in\mathbb{R}^m:(x,y)\in S\}$.
Keywords: separately harmonic function, $\mathcal P$-measure.
Mots-clés : pseudoconvex domain, Poisson integral
@article{JSFU_2021_14_3_a9,
     author = {Sevdiyor A. Imomkulov and Sultanbay M. Abdikadirov},
     title = {Removable singularities of separately harmonic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {369--375},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/}
}
TY  - JOUR
AU  - Sevdiyor A. Imomkulov
AU  - Sultanbay M. Abdikadirov
TI  - Removable singularities of separately harmonic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 369
EP  - 375
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/
LA  - en
ID  - JSFU_2021_14_3_a9
ER  - 
%0 Journal Article
%A Sevdiyor A. Imomkulov
%A Sultanbay M. Abdikadirov
%T Removable singularities of separately harmonic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 369-375
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/
%G en
%F JSFU_2021_14_3_a9
Sevdiyor A. Imomkulov; Sultanbay M. Abdikadirov. Removable singularities of separately harmonic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 369-375. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/