Removable singularities of separately harmonic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 369-375
Voir la notice de l'article provenant de la source Math-Net.Ru
Removable singularities of separately harmonic functions are considered. More precisely, we prove harmonic continuation property of a separately harmonic function $u(x,y)$ in $D\setminus S$ to the domain $D$, when $D\subset\mathbb{R}^n(x)\times\mathbb{R}^m(y)$, $n,m>1$ and $S$ is a closed subset of the domain $D$ with nowhere dense projections $S_1=\{x\in\mathbb{R}^n:(x,y)\in S\}$ and $S_2=\{y\in\mathbb{R}^m:(x,y)\in S\}$.
Keywords:
separately harmonic function, $\mathcal P$-measure.
Mots-clés : pseudoconvex domain, Poisson integral
Mots-clés : pseudoconvex domain, Poisson integral
@article{JSFU_2021_14_3_a9,
author = {Sevdiyor A. Imomkulov and Sultanbay M. Abdikadirov},
title = {Removable singularities of separately harmonic functions},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {369--375},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/}
}
TY - JOUR AU - Sevdiyor A. Imomkulov AU - Sultanbay M. Abdikadirov TI - Removable singularities of separately harmonic functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 369 EP - 375 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/ LA - en ID - JSFU_2021_14_3_a9 ER -
%0 Journal Article %A Sevdiyor A. Imomkulov %A Sultanbay M. Abdikadirov %T Removable singularities of separately harmonic functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 369-375 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/ %G en %F JSFU_2021_14_3_a9
Sevdiyor A. Imomkulov; Sultanbay M. Abdikadirov. Removable singularities of separately harmonic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 369-375. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a9/