Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_3_a8, author = {Dmitry Yu. Pochekutov}, title = {Analytic continuation of diagonals of {Laurent} series for rational functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {360--368}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a8/} }
TY - JOUR AU - Dmitry Yu. Pochekutov TI - Analytic continuation of diagonals of Laurent series for rational functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 360 EP - 368 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a8/ LA - en ID - JSFU_2021_14_3_a8 ER -
%0 Journal Article %A Dmitry Yu. Pochekutov %T Analytic continuation of diagonals of Laurent series for rational functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 360-368 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a8/ %G en %F JSFU_2021_14_3_a8
Dmitry Yu. Pochekutov. Analytic continuation of diagonals of Laurent series for rational functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 360-368. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a8/
[1] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, 1994
[2] R. Stanley, Enumerative combinatorics, v. 2, Cambridge University Press, 1999
[3] D. Pochekutov, “Diagonals of the Laurent Series of Rational Functions”, Siberian Math. Journal, 50:6 (2009), 1081–1091 | DOI
[4] H. Furstenberg, “Algebraic functions over finite fields”, Journal of Algebra, 7:2 (1967), 271–277
[5] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Gauthier-Villars et fils, Paris, 1892
[6] G. Pólya, “Sur les séries entières, dont la somme est une fonction algébrique”, Enseign. Math., 22 (1921), 38–47
[7] M.L.J. Hautus, D.A. Klarner, “The diagonal of a double power series”, Duke Math. J., 38:2 (1971), 229–235
[8] D. Ž.Djokovič, “A properties of the Taylor expansion of rational function in several variables”, J. Math. Anal. Appl., 66 (1978), 679–685
[9] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Mathematics, 151:1 (2000), 45–70
[10] D. Fotiadi, M. Froissart, J. Lascoux, F. Pham, “Applications of an isotopy theorem”, Topology, 4:2 (1965), 159–191
[11] C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, 1962
[12] V.A. Vasiliev, Applied Picard-Lefschetz Theory, AMS, 2002
[13] E.W. Barnes, “A new development of the theory of the hypergeometric functions”, Proc. Lond. Math. Soc. (2), 6:1 (1908), 141–177
[14] T. Clausen, “Ueber die Fälle, wenn die Reihe von der Form $y = 1 + \ldots$ etc. ein Quadrat von der Form $z = 1 +\ldots$ etc. hat”, Journal für die reine und angewandte Mathematik, 3 (1828), 89–91