Effective acoustic equations for a layered material described by the fractional Kelvin--Voigt model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 351-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the construction of effective acoustic equations for a two-phase layered viscoelastic material described by the Kelvin–Voigt model with fractional time derivatives. For this purpose, the theory of two-scale convergence and the Laplace transform with respect to time are used. It is shown that the effective equations are partial integro-differential equations with fractional time derivatives and fractional exponential convolution kernels. In order to find the coefficients and the convolution kernels of these equations, several auxiliary cell problems are formulated and solved.
Keywords: homogenization, viscoelasticity, fractional Kelvin–Voigt model.
Mots-clés : acoustic equations
@article{JSFU_2021_14_3_a7,
     author = {Alexey S. Shamaev and Vladlena V. Shumilova},
     title = {Effective acoustic equations for a layered material described by the fractional {Kelvin--Voigt} model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {351--359},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/}
}
TY  - JOUR
AU  - Alexey S. Shamaev
AU  - Vladlena V. Shumilova
TI  - Effective acoustic equations for a layered material described by the fractional Kelvin--Voigt model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 351
EP  - 359
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/
LA  - en
ID  - JSFU_2021_14_3_a7
ER  - 
%0 Journal Article
%A Alexey S. Shamaev
%A Vladlena V. Shumilova
%T Effective acoustic equations for a layered material described by the fractional Kelvin--Voigt model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 351-359
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/
%G en
%F JSFU_2021_14_3_a7
Alexey S. Shamaev; Vladlena V. Shumilova. Effective acoustic equations for a layered material described by the fractional Kelvin--Voigt model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 351-359. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/

[1] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer, 1980

[2] Z. Abdessamad, I. Kostin, G. Panasenko, V.P. Smyshlyaev, “Memory effect in homogenization of a viscoelastic Kelvin-Voigt model with time-dependent coefficients”, Math. Meth. Appl. Sci., 19:9 (2009), 1603–1630

[3] R.P. Gilbert, A. Panchenko, X. Xie, “Homogenization of a viscoelastic matrix in linear frictional contact”, Math. Meth. Appl. Sci., 28 (2005), 309–328

[4] H.I. Ene, M.L. Mascarenhas, J. Saint Jean Paulin, “Fading memory effects in elastic-viscoelastic composites”, Math. Model. Numer. Anal., 31:7 (1997), 927–952

[5] A.S. Shamaev, V.V. Shumilova, “On the spectrum of one-dimensional vibrations in a medium consisting of elastic and viscoelastic Kelvin-Voigt materials”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 282–290 (in Russian) | DOI

[6] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010

[7] Yu.A. Rossikhin, M.V. Shitikova, “Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results”, Appl. Mech. Rev., 63:1 (2010), 010801, 52 pp. | DOI

[8] T.M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles, Wiley-ISTE, London–Hoboken, 2014

[9] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623

[10] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518

[11] A.S. Shamaev, V.V. Shumilova, “On the spectrum of one-dimensional oscillations of a laminated composite with components of elastic and viscoelastic materials”, Sib. Zhurnal Indust. Matematiki, 15:4 (2012), 124–134 (in Russian)

[12] V.V. Shumilova, “Homogenizing the viscoelasticity problem with long-term memory”, Math. Notes, 94:3 (2013), 414–425 | DOI

[13] Yu.N. Rabotnov, Elementy nasledstvennoy mekhaniki tverdykh tel, Nauka, M., 1977 (in Russian)