Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_3_a7, author = {Alexey S. Shamaev and Vladlena V. Shumilova}, title = {Effective acoustic equations for a layered material described by the fractional {Kelvin--Voigt} model}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {351--359}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/} }
TY - JOUR AU - Alexey S. Shamaev AU - Vladlena V. Shumilova TI - Effective acoustic equations for a layered material described by the fractional Kelvin--Voigt model JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 351 EP - 359 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/ LA - en ID - JSFU_2021_14_3_a7 ER -
%0 Journal Article %A Alexey S. Shamaev %A Vladlena V. Shumilova %T Effective acoustic equations for a layered material described by the fractional Kelvin--Voigt model %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 351-359 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/ %G en %F JSFU_2021_14_3_a7
Alexey S. Shamaev; Vladlena V. Shumilova. Effective acoustic equations for a layered material described by the fractional Kelvin--Voigt model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 351-359. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a7/
[1] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer, 1980
[2] Z. Abdessamad, I. Kostin, G. Panasenko, V.P. Smyshlyaev, “Memory effect in homogenization of a viscoelastic Kelvin-Voigt model with time-dependent coefficients”, Math. Meth. Appl. Sci., 19:9 (2009), 1603–1630
[3] R.P. Gilbert, A. Panchenko, X. Xie, “Homogenization of a viscoelastic matrix in linear frictional contact”, Math. Meth. Appl. Sci., 28 (2005), 309–328
[4] H.I. Ene, M.L. Mascarenhas, J. Saint Jean Paulin, “Fading memory effects in elastic-viscoelastic composites”, Math. Model. Numer. Anal., 31:7 (1997), 927–952
[5] A.S. Shamaev, V.V. Shumilova, “On the spectrum of one-dimensional vibrations in a medium consisting of elastic and viscoelastic Kelvin-Voigt materials”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 282–290 (in Russian) | DOI
[6] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010
[7] Yu.A. Rossikhin, M.V. Shitikova, “Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results”, Appl. Mech. Rev., 63:1 (2010), 010801, 52 pp. | DOI
[8] T.M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles, Wiley-ISTE, London–Hoboken, 2014
[9] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623
[10] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518
[11] A.S. Shamaev, V.V. Shumilova, “On the spectrum of one-dimensional oscillations of a laminated composite with components of elastic and viscoelastic materials”, Sib. Zhurnal Indust. Matematiki, 15:4 (2012), 124–134 (in Russian)
[12] V.V. Shumilova, “Homogenizing the viscoelasticity problem with long-term memory”, Math. Notes, 94:3 (2013), 414–425 | DOI
[13] Yu.N. Rabotnov, Elementy nasledstvennoy mekhaniki tverdykh tel, Nauka, M., 1977 (in Russian)