On transcendental systems of equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 326-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several types of transcendental systems of equations are considered: the simplest ones, special, and general. Since the number of roots of such systems, as a rule, is infinite, it is necessary to study power sums of the roots of negative degree. Formulas for finding residue integrals, their relation to power sums of a negative degree of roots and their relation to residue integrals (multidimensional analogs of Waring's formulas) are obtained. Various examples of transcendental systems of equations and calculation of multidimensional numerical series are given.
Keywords: transcendental systems of equations, power sums of roots, residue integral.
@article{JSFU_2021_14_3_a5,
     author = {Alexander M. Kytmanov and Olga V. Khodos},
     title = {On transcendental systems of equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {326--343},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a5/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Olga V. Khodos
TI  - On transcendental systems of equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 326
EP  - 343
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a5/
LA  - en
ID  - JSFU_2021_14_3_a5
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Olga V. Khodos
%T On transcendental systems of equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 326-343
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a5/
%G en
%F JSFU_2021_14_3_a5
Alexander M. Kytmanov; Olga V. Khodos. On transcendental systems of equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 326-343. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a5/

[1] L.A. Aizenberg, “On a formula of the gereralized multidimensional logarithmic residue and the solution of system of nonlinear equations”, Sov. Math. Doc., 18 (1977), 691–695

[2] L.A. Aizenberg, A.P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Amer. Math. Monographs, AMS, Providence, 1983

[3] A.K. Tsikh, Multidimensional residues and their applications, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992

[4] V.I. Bykov, A.M. Kytmanov, M.Z. Lazman, Elimination Methods in Polynomial Computer Algebra, Springer, New–York, 1998

[5] L.A. Aizenberg, A.M. Kytmanov, “Multidimensional analogues of Newton's formulas for systems of nonlinear algebraic equations and some of their applications”, Siberian Mathematical Journal, 22 (1981), 180–189

[6] V.I. Bykov, Modeling of the critical phenomena in chemical kinetics, Komkniga, M., 2006 (in Russian)

[7] V.I. Bykov, S.B. Tsybenova, Non-linear models of chemical kinetics, KRASAND, M., 2011 (in Russian)

[8] A.M. Kytmanov, Z.E. Potapova, “Formulas for determining power sums of roots of systems of meromorphic functions”, Izvestiya VUZ. Matematika, 49:8 (2005), 36–45 (in Russian)

[9] V.I. Bykov, A.M. Kytmanov, S.G. Myslivets, “Power sums of nonlinear systems of equations”, Dokl. Math., 76 (2007), 641–644 | DOI

[10] A.M. Kytmanov, E.K. Myshkina, Russian Mathematics, 57:12 (2013), 31–43 | DOI

[11] O.V. Khodos, “On Some Systems of Non-algebraic Equations in $\mathbb C^n$”, Journal of Siberian Federal University. Mathematics Physics, 7:4 (2014), 455–465

[12] A.M. Kytmanov, E.K. Myshkina, “On calculation of power sums of roots for one class of systems of non-algebraic equations”, Sib. Elektron. Mat. Rep., 12 (2015), 190–209 (in Russian) | DOI

[13] A.A. Kytmanov, A.M. Kytmanov, E.K. Myshkina, “Finding residue integrals for systems of non-algebraic equations in $\mathbb C^n$”, Journal of Symbolic Computation, 66 (2015), 98–110 | DOI

[14] A.V. Kytmanov, E.R. Myshkina, J. Math. Sciences, 213:6 (2016), 868–886 | DOI

[15] A.M. Kytmanov, O.V. Khodos, “On systems of non-algebraic equation in $\mathbb C^n$”, Contemporary Mathematics, 662 (2016), 77–88

[16] A.M. Kytmanov, O.V. Khodos, “On localization of the zeros of an entire function of finite order of growth”, Journal Complex Analysis and Operator Theory, 11:2 (2017), 393–416

[17] A.M. Kytmanov, Ya.M. Naprienko, “One approach to finding the resultant of two entire functions”, Complex variables and elliptic equations, 62:2 (2017), 269–286

[18] A.M. Kytmanov, O.V. Khodos, “On one approach to determining the resultant of two entire functions”, Russian Math., 2018, no. 4, 49–59

[19] A.A. Kytmanov, A.M. Kytmanov, E.K. Myshkina, “Residue Integrals and Waring's Formulas for a Class of Systems of Transcendental Equations in $\mathbb C^n$”, Journal of Complex variables and Elliptic Equations, 64:1 (2018), 93–111 | DOI

[20] A.M. Kytmanov, E.K. Myshkina, “Residue integrals and Waring formulas for algebraic and transcendental systems of equations”, Russian Math., 2019, no. 5, 40–55 | DOI

[21] A.M. Kytmanov, Algebraic and transcendental systems of equations, SFU, Krasnoyarsk, 2019

[22] M. Passare, A. Tsikh, “Residue integrals and their Mellin transforms”, Can. J. Math., 47:5 (1995), 1037–1050