Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_3_a4, author = {Ahmed A. Hamoud}, title = {Uniqueness and stability results for caputo fractional {Volterra--Fredholm} integro-differential equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {313--325}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a4/} }
TY - JOUR AU - Ahmed A. Hamoud TI - Uniqueness and stability results for caputo fractional Volterra--Fredholm integro-differential equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 313 EP - 325 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a4/ LA - en ID - JSFU_2021_14_3_a4 ER -
%0 Journal Article %A Ahmed A. Hamoud %T Uniqueness and stability results for caputo fractional Volterra--Fredholm integro-differential equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 313-325 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a4/ %G en %F JSFU_2021_14_3_a4
Ahmed A. Hamoud. Uniqueness and stability results for caputo fractional Volterra--Fredholm integro-differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 313-325. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a4/
[1] B. Ahmad, S. Sivasundaram, “Some existence results for fractional integro-differential equations with nonlinear conditions”, Communications Appl. Anal., 12 (2008), 107–112
[2] M. Ali, W. Ma, “New exact solutions of nonlinear (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation”, Advances in Mathematical Physics, 2019 (2019), 1–8
[3] M. Ali, A. Hadhoud, H. Srivastava, “Solution of fractional Volterra–Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method”, Advances in Mathematical Physics, 2019:1 (2019), 1–14 | DOI
[4] M. Bani Issa, A. Hamoud, K. Ghadle, “Numerical solutions of fuzzy integro-differential equations of the second kind”, Journal of Mathematics and Computer Science, 23 (2021), 67–74 | DOI
[5] S. Cheng, S. Talwong, V. Laohakosol, “Exact solution of iterative functional differential equation”, Computing, 76 (2006), 67–76 | DOI
[6] L. Dawood, A. Sharif, A. Hamoud, “Solving higher-order integro-differential equations by VIM and MHPM”, International Journal of Applied Mathematics, 33 (2020), 253–264 | DOI
[7] A. Hamoud, K. Ghadle, “The approximate solutions of fractional Volterra–Fredholm integro-differential equations by using analytical techniques”, Probl. Anal. Issues Anal., 7(25):1 (2018), 41–58 | DOI
[8] A. Hamoud, K. Ghadle, “Usage of the homotopy analysis method for solving fractional Volterra–Fredholm integro-differential equation of the second kind”, Tamkang J. Math., 49:4 (2018), 301–315 | DOI
[9] A. Hamoud, K. Hussain, K. Ghadle, “The reliable modified Laplace Adomian decomposition method to solve fractional Volterra–Fredholm integro differential equations”, Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications $\$ Algorithms, 26 (2019), 171–184
[10] A. Hamoud, K. Ghadle, “Existence and uniqueness of the solution for Volterra–Fredholm integro-differential equations”, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:6 (2018), 692–701 | DOI
[11] A. Hamoud, K. Ghadle, “Some new existence, uniqueness and convergence results for fractional Volterra–Fredholm integro-differential equations”, J. Appl. Comput. Mech., 5:1 (2019), 58–69 | DOI
[12] A. Hamoud, “Existence and uniqueness of solutions for fractional neutral Volterra–Fredholm integro-differential equations”, Advances in the Theory of Nonlinear Analysis and its Application, 4:4 (2020), 321–331 | DOI
[13] J.H. He, “Some applications of nonlinear fractional differential equations and their approximations”, Bull. Sci. Technol. Soc., 15 (1999), 86–90
[14] R. Ibrahim, S. Momani, “On the existence and uniqueness of solutions of a class of fractional differential equations”, Journal of Mathematical Analysis and Applications, 334 (2007), 1–10 | DOI
[15] R. Ibrahim, “Existence of iterative Cauchy fractional differential equations”, Int. J. Math. Sci., 7 (2013), 379–384
[16] S. Kendre, V. Kharat, R. Narute, “On existence of solution for iterative integro-differential equations”, Nonlinear Anal. Differ. Equ., 3 (2015), 123–131
[17] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006
[18] V. Lakshmikantham, M. Rao, Theory of Integro-Differential Equations, Gordon $\$ Breach, London, 1995
[19] M. Lauran, “Existence results for some differential equations with deviating argument”, Filomat, 25 (2011), 21–31 | DOI
[20] W. Li, S. Cheng, “A picard theorem for iterative differential equations”, Demonstratio Math., 42 (2009), 371–380
[21] S. Muthaiah, M. Murugesan, N. Thangaraj, “Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations”, Adv. Theory Nonlinear Anal. Appl., 3 (2019), 162–173 | DOI
[22] M. Matar, “Controllability of fractional semilinear mixed Volterra–Fredholm integro differential equations with nonlocal conditions”, Int. J. Math. Anal., 4 (2010), 1105–1116
[23] S. Momani, A. Jameel, S. Al-Azawi, “Local and global uniqueness theorems on fractional integro-differential equations via Bihari's and Gronwall's inequalities”, Soochow J. Math., 33 (2007), 619–627
[24] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993
[25] R. Panda, M. Dash, “Fractional generalized splines and signal processing”, Signal Process, 86 (2006), 2340–2350
[26] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993
[27] R. Shah, A. Zada, “A fixed point approach to the stability of a nonlinear Volterra integro-differential equations with delay”, Hacet. J. Math. Stat., 47 (2018), 615–623
[28] S. Unhaley, S. Kendre, “On existence and uniqueness results for iterative fractional integro-differential equation with deviating arguments”, Applied Mathematics E-Notes, 19 (2019), 116–127
[29] J. Wu, Y. Liu, “Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces”, Electron. J. Differential Equations, 2009 (2009), 1–8