Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_3_a11, author = {Nurbek Kh. Narzillaev}, title = {Delta-extremal functions in $\mathbb{C}^n$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {389--398}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a11/} }
TY - JOUR AU - Nurbek Kh. Narzillaev TI - Delta-extremal functions in $\mathbb{C}^n$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 389 EP - 398 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a11/ LA - en ID - JSFU_2021_14_3_a11 ER -
Nurbek Kh. Narzillaev. Delta-extremal functions in $\mathbb{C}^n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 389-398. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a11/
[1] P. Lelong, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, 1968
[2] V.P. Zakharyuta, “Bernstein's theorem on optimal polynomial approximations to holomorphic and harmonic functions of several variables”, All-Union Conf. Theory of functions, Khar'kov, 1971, 80–81
[3] V.P. Zakharyuta, “Extremal plurisubharmonic functions, orthogonal polynomials, and the Bernstein–Walsh theorem for analytic functions of several complex variables”, Ann. Polon. Math., 33 (1976), 137–148
[4] J. Siciak, “Extremal plurisubharmonic functions in $\mathbb{C}^{n}$”, Proceedings of the First Finnish – Polish Summer School in complex Analysis at Podlesice, University of Lods, Lods, 1977, 115–152
[5] A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds”, Russian Math. Surveys, 36:4 (1981), 53–105
[6] A. Sadullaev, Pluripotential theory. Applications, Palmarium Academic Publishing, 2012 (in Russian)
[7] A. Sadullaev, “Pluriregular compacts in $\mathbb{P}^{n}$”, Contemporary mathematics, 662, AMS, 2016, 145–156
[8] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89
[9] A. Zeriahi, “Fonction de Green pluricomplexe a pole a l'infini sur un espace de Stein parabolique”, Math. Scand., 69 (1991), 89–126
[10] M.A. Alan, “Weighted regularity and two problems of Sadullaev on weighted regularity”, Complex Analysis and its Synergies, 8:5 (2019) | DOI
[11] M.A. Alan, N. Gökhan Göğüş, “Supports of weighted equilibrium measures: complete characterization”, Potential Analysis, 39:4 (2013), 411–415 (SCI)
[12] T. Bloom, N. Levenberg, “Weighted pluripotential theory in $\mathbb{C}^N$”, Amer. J. Math., 125:1 (2003), 57–103
[13] T. Bloom, “Weighted polynomials and weighted pluripotential theory”, Trans. Amer. Math. Soc., 361:4 (2009), 2163–2179
[14] M. Klimek, Pluripotential theory, Oxford University Press, New York, 1991
[15] N.X. Narzillaev, “About $\psi$-regular points”, Tashkent. Acta NUUz, 2:2 (2017), 173–175 (in Russian)
[16] E. Bedford, B.A. Taylor, “A new capacity for plurisubharmonic functions”, Acta Mathematica, 149 (1982), 1–41