Delta-extremal functions in $\mathbb{C}^n$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 389-398
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to properties of a weighted Green function. We study the $(\delta,\psi)$-extremal Green function $V^{*}_{\delta}(z,K,\psi)$ defined by the class $\mathcal{L}_{\delta}=\big\{u(z)\in psh(\mathbb C^{n}):\ u(z) \leqslant C_{u}+\delta\ln^{+}|z|, \ z\in\mathbb C^{n}\big\}, \ \delta>0.$ We see that the notion of regularity of points with respect to different numbers $\delta$ differ from each other. Nevertheless, we prove that if a compact set $K\subset\mathbb{C}^{n}$ is regular, then $\delta$-extremal function is continuous in the whole space $\mathbb C^{n}.$
Keywords:
plurisubharmonic function, Green function, weighted Green function, $\delta$-extremal function.
@article{JSFU_2021_14_3_a11,
author = {Nurbek Kh. Narzillaev},
title = {Delta-extremal functions in $\mathbb{C}^n$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {389--398},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a11/}
}
TY - JOUR
AU - Nurbek Kh. Narzillaev
TI - Delta-extremal functions in $\mathbb{C}^n$
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2021
SP - 389
EP - 398
VL - 14
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a11/
LA - en
ID - JSFU_2021_14_3_a11
ER -
Nurbek Kh. Narzillaev. Delta-extremal functions in $\mathbb{C}^n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 389-398. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a11/