The time-fractional Airy equation on the metric graph
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 376-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

Initial boundary value problem for the time-fractional Airy equation on a graph with finite bonds is considered in the paper. Properties of potentials for this equation are studied. Using these properties the solutions of the considered problem were found. The uniqueness theorem is proved using the analogue of Grönwall-Bellman inequality and a-priory estimate.
Keywords: time-fractional Airy equation, IBVP, PDE on metric graphs, fundamental solutions, integral representation.
@article{JSFU_2021_14_3_a10,
     author = {Kamoladdin Rakhimov and Zarifboy Sobirov and Nasridin Zhabborov},
     title = {The time-fractional {Airy} equation on the metric graph},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {376--388},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/}
}
TY  - JOUR
AU  - Kamoladdin Rakhimov
AU  - Zarifboy Sobirov
AU  - Nasridin Zhabborov
TI  - The time-fractional Airy equation on the metric graph
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 376
EP  - 388
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/
LA  - en
ID  - JSFU_2021_14_3_a10
ER  - 
%0 Journal Article
%A Kamoladdin Rakhimov
%A Zarifboy Sobirov
%A Nasridin Zhabborov
%T The time-fractional Airy equation on the metric graph
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 376-388
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/
%G en
%F JSFU_2021_14_3_a10
Kamoladdin Rakhimov; Zarifboy Sobirov; Nasridin Zhabborov. The time-fractional Airy equation on the metric graph. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 376-388. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/

[1] A.A. Kilbas, H.M. Srivastava, Trujillo Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, etc., 2006

[2] A. Carpintery, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, CIAM Cources and Lectures, 376, Springer, Wien, 1997

[3] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, WSPC, Singapore, 2000

[4] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Reports, 339 (2000), 1–77

[5] Y.S. Kivshar, G.P. Agarwal, Optical Solitons: From Fibers to Photonic Crystals, Academic, San Diego, 2003

[6] T. Kottos, U. Smilansky, “Periodic Orbit Theory and Spectral Statistics for Quantum Graphs”, Annals of Physics, 274:1 (1999), 76–124

[7] S. Gnutzmann, U. Smilansky, “Quantum graphs: Applications to quantum chaos and universal spectral statistics”, Advances in Physics, 55:5–6 (2006), 527–625

[8] G. Khudayberganov, Z. Sobirov, M. Eshimbetov, “Unified transform method for the Schrodinger equation on a simple metric graph”, Journal of Siberian Federal University. Mathematics and Physics, 12:4 (2019), 412–420 | DOI

[9] B. Pelloni, “Well-posed boundary value problems for linear evolution equations on a finite interval”, Mathematical Proceedings of the Cambridge Philosophical Society, 136 (2004), 361–382

[10] A.A. Himonas, D. Mantzavinos, F. Yan, “The Korteweg-de Vries equation on an interval”, Journal of Mathematical Physics, 60:5 (2019) | DOI

[11] T. Jurayev, Boundary value problems for equations of mixed and mixed-composite types, “Fan”, Tashkent, Uzbekistan, 1979 (in Russian)

[12] L. Cattabriga, “Un problema al contorno per una equazione parabolica di ordine dispari”, Annali della Scuola Normale Superiore di Pisa, 13:3 (1959), 163–203

[13] Z.A. Sobirov, H. Uecker, M.I. Akhmedov, “Exact solutions of the Cauchy problem for the linearized KdV equation on metric star graphs”, Uzbek Mathematical Journal, 3 (2015), 143–154

[14] Z.A. Sobirov, M.I. Akhmedov, U. Hecker, “Cauchy problem for the linearized KdV equation on general metric star graphs”, Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015), 198–204

[15] D. Mugnolo, D. Noja, Ch. Seifert, “Airy-type evolution equations on star graphs”, Analysis and PDE, 11:7 (2018), 1625–1652 | DOI

[16] Z.A. Sobirov, M.I. Akhmedov, O.V. Karpova, B. Jabbarova, “Linearized KdV equation on a metric graph”, Nanosystems: Physics, Chemistry, Mathematics, 6:6 (2015), 757–761

[17] Ch. Seifert, “The linearized Korteweg-de-Vries equation on general metric graphs”, The Diversity and Beauty of Applied Operator Theory, 2018, 449–458

[18] M. Cavalcante, “The Korteweg- de Vries equation on a metric star graph”, Zeitschrift fur angewandte Mathematik und Physik, 69 (2018), 124 | DOI

[19] A.V. Pskhu, “Fundamental solution of a third-order equation with a fractional derivative”, Uzbek mathematical journal, 4 (2017), 119–127 (in Russian)

[20] K.U. Rakhimov, “The method of potentials for the Airy equation of fractional order”, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 3:2 (2020), 222–235

[21] Z.A. Sobirov, K.U. Rakhimov, “Cauchy problem for the Airy equation with fractional time-fractional on a star-shaped graph”, Institute of Mathematics Bulletin. Uzbekistan, 5 (2019), 40–49

[22] A.V. Pskhu, Fractional partial differential equations, Moscow, Russia, 2005

[23] F. Mainardi, A. Mura, G. Pagnini, “The M-Wright function in time-fractional diffusion processes: a tutorial survey”, International Journal of Differential Equations, 3 (2010)

[24] A.A. Alikhanov, “A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations”, Differential equations, 46:5 (2010), 658–664