Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_3_a10, author = {Kamoladdin Rakhimov and Zarifboy Sobirov and Nasridin Zhabborov}, title = {The time-fractional {Airy} equation on the metric graph}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {376--388}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/} }
TY - JOUR AU - Kamoladdin Rakhimov AU - Zarifboy Sobirov AU - Nasridin Zhabborov TI - The time-fractional Airy equation on the metric graph JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 376 EP - 388 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/ LA - en ID - JSFU_2021_14_3_a10 ER -
%0 Journal Article %A Kamoladdin Rakhimov %A Zarifboy Sobirov %A Nasridin Zhabborov %T The time-fractional Airy equation on the metric graph %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 376-388 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/ %G en %F JSFU_2021_14_3_a10
Kamoladdin Rakhimov; Zarifboy Sobirov; Nasridin Zhabborov. The time-fractional Airy equation on the metric graph. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 376-388. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/
[1] A.A. Kilbas, H.M. Srivastava, Trujillo Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, etc., 2006
[2] A. Carpintery, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, CIAM Cources and Lectures, 376, Springer, Wien, 1997
[3] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, WSPC, Singapore, 2000
[4] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Reports, 339 (2000), 1–77
[5] Y.S. Kivshar, G.P. Agarwal, Optical Solitons: From Fibers to Photonic Crystals, Academic, San Diego, 2003
[6] T. Kottos, U. Smilansky, “Periodic Orbit Theory and Spectral Statistics for Quantum Graphs”, Annals of Physics, 274:1 (1999), 76–124
[7] S. Gnutzmann, U. Smilansky, “Quantum graphs: Applications to quantum chaos and universal spectral statistics”, Advances in Physics, 55:5–6 (2006), 527–625
[8] G. Khudayberganov, Z. Sobirov, M. Eshimbetov, “Unified transform method for the Schrodinger equation on a simple metric graph”, Journal of Siberian Federal University. Mathematics and Physics, 12:4 (2019), 412–420 | DOI
[9] B. Pelloni, “Well-posed boundary value problems for linear evolution equations on a finite interval”, Mathematical Proceedings of the Cambridge Philosophical Society, 136 (2004), 361–382
[10] A.A. Himonas, D. Mantzavinos, F. Yan, “The Korteweg-de Vries equation on an interval”, Journal of Mathematical Physics, 60:5 (2019) | DOI
[11] T. Jurayev, Boundary value problems for equations of mixed and mixed-composite types, “Fan”, Tashkent, Uzbekistan, 1979 (in Russian)
[12] L. Cattabriga, “Un problema al contorno per una equazione parabolica di ordine dispari”, Annali della Scuola Normale Superiore di Pisa, 13:3 (1959), 163–203
[13] Z.A. Sobirov, H. Uecker, M.I. Akhmedov, “Exact solutions of the Cauchy problem for the linearized KdV equation on metric star graphs”, Uzbek Mathematical Journal, 3 (2015), 143–154
[14] Z.A. Sobirov, M.I. Akhmedov, U. Hecker, “Cauchy problem for the linearized KdV equation on general metric star graphs”, Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015), 198–204
[15] D. Mugnolo, D. Noja, Ch. Seifert, “Airy-type evolution equations on star graphs”, Analysis and PDE, 11:7 (2018), 1625–1652 | DOI
[16] Z.A. Sobirov, M.I. Akhmedov, O.V. Karpova, B. Jabbarova, “Linearized KdV equation on a metric graph”, Nanosystems: Physics, Chemistry, Mathematics, 6:6 (2015), 757–761
[17] Ch. Seifert, “The linearized Korteweg-de-Vries equation on general metric graphs”, The Diversity and Beauty of Applied Operator Theory, 2018, 449–458
[18] M. Cavalcante, “The Korteweg- de Vries equation on a metric star graph”, Zeitschrift fur angewandte Mathematik und Physik, 69 (2018), 124 | DOI
[19] A.V. Pskhu, “Fundamental solution of a third-order equation with a fractional derivative”, Uzbek mathematical journal, 4 (2017), 119–127 (in Russian)
[20] K.U. Rakhimov, “The method of potentials for the Airy equation of fractional order”, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 3:2 (2020), 222–235
[21] Z.A. Sobirov, K.U. Rakhimov, “Cauchy problem for the Airy equation with fractional time-fractional on a star-shaped graph”, Institute of Mathematics Bulletin. Uzbekistan, 5 (2019), 40–49
[22] A.V. Pskhu, Fractional partial differential equations, Moscow, Russia, 2005
[23] F. Mainardi, A. Mura, G. Pagnini, “The M-Wright function in time-fractional diffusion processes: a tutorial survey”, International Journal of Differential Equations, 3 (2010)
[24] A.A. Alikhanov, “A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations”, Differential equations, 46:5 (2010), 658–664