The time-fractional Airy equation on the metric graph
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 376-388

Voir la notice de l'article provenant de la source Math-Net.Ru

Initial boundary value problem for the time-fractional Airy equation on a graph with finite bonds is considered in the paper. Properties of potentials for this equation are studied. Using these properties the solutions of the considered problem were found. The uniqueness theorem is proved using the analogue of Grönwall-Bellman inequality and a-priory estimate.
Keywords: time-fractional Airy equation, IBVP, PDE on metric graphs, fundamental solutions, integral representation.
@article{JSFU_2021_14_3_a10,
     author = {Kamoladdin Rakhimov and Zarifboy Sobirov and Nasridin Zhabborov},
     title = {The time-fractional {Airy} equation on the metric graph},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {376--388},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/}
}
TY  - JOUR
AU  - Kamoladdin Rakhimov
AU  - Zarifboy Sobirov
AU  - Nasridin Zhabborov
TI  - The time-fractional Airy equation on the metric graph
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 376
EP  - 388
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/
LA  - en
ID  - JSFU_2021_14_3_a10
ER  - 
%0 Journal Article
%A Kamoladdin Rakhimov
%A Zarifboy Sobirov
%A Nasridin Zhabborov
%T The time-fractional Airy equation on the metric graph
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 376-388
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/
%G en
%F JSFU_2021_14_3_a10
Kamoladdin Rakhimov; Zarifboy Sobirov; Nasridin Zhabborov. The time-fractional Airy equation on the metric graph. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 376-388. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a10/