Estimating the mean of heavy-tailed distribution under random truncation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 273-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inspired by L. Peng's work on estimating the mean of heavy-tailed distribution in the case of completed data. we propose an alternative estimator and study its asymptotic normality when it comes to the right truncated random variable. A simulation study is executed to evaluate the finite sample behavior on the proposed estimator.
Keywords: random truncation, Hill estimator, Lynden-Bell estimator, heavy-tailed distributions.
@article{JSFU_2021_14_3_a1,
     author = {Ben Dahmane Khanssa and Benatia Fateh and Brahimi Brahim},
     title = {Estimating the mean of heavy-tailed distribution under random truncation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {273--286},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/}
}
TY  - JOUR
AU  - Ben Dahmane Khanssa
AU  - Benatia Fateh
AU  - Brahimi Brahim
TI  - Estimating the mean of heavy-tailed distribution under random truncation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 273
EP  - 286
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/
LA  - en
ID  - JSFU_2021_14_3_a1
ER  - 
%0 Journal Article
%A Ben Dahmane Khanssa
%A Benatia Fateh
%A Brahimi Brahim
%T Estimating the mean of heavy-tailed distribution under random truncation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 273-286
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/
%G en
%F JSFU_2021_14_3_a1
Ben Dahmane Khanssa; Benatia Fateh; Brahimi Brahim. Estimating the mean of heavy-tailed distribution under random truncation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 273-286. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/

[1] S. Benchaira, D. Meraghni, A. Necir, “On the asymptotic normality of the extreme value index for right truncated data”, Statist. Probab. Lett., 107 (2015), 378–384 | DOI

[2] S. Benchaira, D. Meraghni, A. Necir, “Tail product-limit process for truncated data with application to extreme value index estimation”, Extremes, 19 (2016), 219–251 | DOI

[3] B. Brahimi, M D. eraghni, A. Necir, D. Yahia, “A bias-reduced estimator for the mean of a heavy-tailed distribution with an infinite second moment”, J. Statist. Plann. Inference, 143 (2013), 1064–1081

[4] M. Csörgo, P.Révész, Strong Approximations in Probability and Statistics, Probability and Mathematical Statistics, Academic Press, Inc., New York–London; Harcourt Brace Jovanovich, Publishers, 1981

[5] H. Dree, L. de Haan, D. Li, “Approximations to the tail empirical distribution function with application to testing extreme value conditions”, J. Statist. Plann. Inference, 136 (2006), 3498–3538

[6] J.H.J. Einmahl, “Limit theorems for tail processes with application to intermediate quantile estimation”, J. Statist. Plann. Inference, 32 (1992), 137–145

[7] J.H.J. Einmahl, L. de Haan, D. Li, “Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition”, Ann. Statist., 34 (1987), 1987–2014

[8] L. Gardes, G. Stupfler, “Estimating extreme quantiles under random truncation”, TEST, 24 (2015), 207–227 | DOI

[9] L. de Haan, A. Ferreira, Extreme Value Theory: an Introduction, Springer, 2006

[10] D. Lynden-Bell, “A method of allowing for known observational selection in small samples applied to 3CR quasars”, Monthly Notices Roy. Astronom. Soc., 155 (1971), 95–118

[11] L. Peng, “Estimating the mean of a heavy-tailed distribution”, Statist. Probab. Lett., 52 (2001), 255–264

[12] R.-D. Reiss, M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Birkhäuser, 2007

[13] S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, 2006

[14] W. Stute, “The central limit theorem under random censorship”, Ann. Statist., 23 (1995), 422–439

[15] W. Stute, J.L. Wang, “The central limit theorem under random truncation”, Bernoulli, 14:3 (2008), 604

[16] M. Woodroofe, “Estimating a distribution function with truncated data”, Ann. Statist., 13 (1985), 163–177