Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_3_a1, author = {Ben Dahmane Khanssa and Benatia Fateh and Brahimi Brahim}, title = {Estimating the mean of heavy-tailed distribution under random truncation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {273--286}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/} }
TY - JOUR AU - Ben Dahmane Khanssa AU - Benatia Fateh AU - Brahimi Brahim TI - Estimating the mean of heavy-tailed distribution under random truncation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 273 EP - 286 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/ LA - en ID - JSFU_2021_14_3_a1 ER -
%0 Journal Article %A Ben Dahmane Khanssa %A Benatia Fateh %A Brahimi Brahim %T Estimating the mean of heavy-tailed distribution under random truncation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 273-286 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/ %G en %F JSFU_2021_14_3_a1
Ben Dahmane Khanssa; Benatia Fateh; Brahimi Brahim. Estimating the mean of heavy-tailed distribution under random truncation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 273-286. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a1/
[1] S. Benchaira, D. Meraghni, A. Necir, “On the asymptotic normality of the extreme value index for right truncated data”, Statist. Probab. Lett., 107 (2015), 378–384 | DOI
[2] S. Benchaira, D. Meraghni, A. Necir, “Tail product-limit process for truncated data with application to extreme value index estimation”, Extremes, 19 (2016), 219–251 | DOI
[3] B. Brahimi, M D. eraghni, A. Necir, D. Yahia, “A bias-reduced estimator for the mean of a heavy-tailed distribution with an infinite second moment”, J. Statist. Plann. Inference, 143 (2013), 1064–1081
[4] M. Csörgo, P.Révész, Strong Approximations in Probability and Statistics, Probability and Mathematical Statistics, Academic Press, Inc., New York–London; Harcourt Brace Jovanovich, Publishers, 1981
[5] H. Dree, L. de Haan, D. Li, “Approximations to the tail empirical distribution function with application to testing extreme value conditions”, J. Statist. Plann. Inference, 136 (2006), 3498–3538
[6] J.H.J. Einmahl, “Limit theorems for tail processes with application to intermediate quantile estimation”, J. Statist. Plann. Inference, 32 (1992), 137–145
[7] J.H.J. Einmahl, L. de Haan, D. Li, “Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition”, Ann. Statist., 34 (1987), 1987–2014
[8] L. Gardes, G. Stupfler, “Estimating extreme quantiles under random truncation”, TEST, 24 (2015), 207–227 | DOI
[9] L. de Haan, A. Ferreira, Extreme Value Theory: an Introduction, Springer, 2006
[10] D. Lynden-Bell, “A method of allowing for known observational selection in small samples applied to 3CR quasars”, Monthly Notices Roy. Astronom. Soc., 155 (1971), 95–118
[11] L. Peng, “Estimating the mean of a heavy-tailed distribution”, Statist. Probab. Lett., 52 (2001), 255–264
[12] R.-D. Reiss, M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Birkhäuser, 2007
[13] S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, 2006
[14] W. Stute, “The central limit theorem under random censorship”, Ann. Statist., 23 (1995), 422–439
[15] W. Stute, J.L. Wang, “The central limit theorem under random truncation”, Bernoulli, 14:3 (2008), 604
[16] M. Woodroofe, “Estimating a distribution function with truncated data”, Ann. Statist., 13 (1985), 163–177