Manufacturing of opals from polymethylmethacrylate particles in dispersion media with different viscosities
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 176-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article was prepared based on the materials of the report at the first All-Russian scientific conference with international participation "YENISEI PHOTONICS – 2020". Photonic crystals are structures that have a spatial architecture with a periodically changing complex dielectric function at scales comparable to the wavelengths of light in the visible frequency range. The purpose of this study is to obtain three-dimensional photonic crystals by self-assembly from submicron spherical monodisperse particles of polymethylmethacrylate in dispersion media with different viscosities.
Keywords: emulsion-free polymerization, viscosity of dispersion medium, PMMA beads, submicrosphere, self-assembly, 2D and 3D colloidal crystals, photonic crystal, metamaterial, SEM micrographs, IR spectroscopy.
@article{JSFU_2021_14_2_a4,
     author = {Ivan V. Nemtsev and Olga V. Shabanova},
     title = {Manufacturing of opals from polymethylmethacrylate particles in dispersion media with different viscosities},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {176--183},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a4/}
}
TY  - JOUR
AU  - Ivan V. Nemtsev
AU  - Olga V. Shabanova
TI  - Manufacturing of opals from polymethylmethacrylate particles in dispersion media with different viscosities
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 176
EP  - 183
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a4/
LA  - en
ID  - JSFU_2021_14_2_a4
ER  - 
%0 Journal Article
%A Ivan V. Nemtsev
%A Olga V. Shabanova
%T Manufacturing of opals from polymethylmethacrylate particles in dispersion media with different viscosities
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 176-183
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a4/
%G en
%F JSFU_2021_14_2_a4
Ivan V. Nemtsev; Olga V. Shabanova. Manufacturing of opals from polymethylmethacrylate particles in dispersion media with different viscosities. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 176-183. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a4/

[1] J. Zhou, et al., “Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate”, NPG Asia Mater., 4 (2012), e21 | DOI

[2] P. Lova, G. Manfredi, D. Comoretto, “Advances in Functional Solution Processed Planar 1D Photonic Crystals”, Adv. Opt. Mater., 6 (2018), 1800730–1800756 | DOI

[3] M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, “Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures”, Opt. Mater. (Amst), 72 (2017), 403–421 | DOI

[4] J. Zhang, Z. Sun, B. Yang, “Self-assembly of photonic crystals from polymer colloids”, Curr. Opin. Colloid. Interface Sci., 14 (2009), 103–114 | DOI

[5] G.I.N. Waterhouse, M.R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization”, Polyhedron, 26 (2007), 356–368 | DOI

[6] E. Armstrong, C.O'Dwyer, “Artificial opal photonic crystals and inverse opal structures - fundamentals and applications from optics to energy storage”, J. Mater. Chem. C, 3 (2015), 6109–6143 | DOI

[7] Q. Zhao, et al., “Large-scale ordering of nanoparticles using viscoelastic shear processing”, Nat. Commun., 7 (2016) | DOI

[8] Q. Zhao, et al., “Nanoassembly of Polydisperse Photonic Crystals Based on Binary and Ternary Polymer Opal”, Alloys, Adv. Opt. Mater., 4 (2016), 1494–1500 | DOI

[9] G. Shang, et al., “Transparency induced in opals via nanometer thick conformal coating”, Sci. Rep., 9 (2019), 1–7 | DOI

[10] Z.Z. Gu, et al., “Self-assembly of monodisperse spheres on substrates with different wettability”, Appl. Phys. A Mater. Sci. Process., 81 (2005), 47–49 | DOI

[11] J.-H. Lee, et al., “25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons”, Adv. Mater., 26 (2014), 532–569 | DOI

[12] G.I.N. Waterhouse, W.T. Chen, A. Chan, D. Sun-Waterhouse, “Achieving Color and Function with Structure: Optical and Catalytic Support Properties of ZrO2 Inverse Opal Thin Films”, ACS Omega, 3 (2018), 9658–9674 | DOI

[13] J.F. Galisteo, et al., “Self-assembly approach to optical metamaterials”, J. Opt. A Pure Appl. Opt., 7 (2005), S244–S254 | DOI

[14] A. Baron, A. Aradian, V. Ponsinet, P. Barois, “Self-assembled optical metamaterials”, Opt. Laser Technol., 82 (2016), 94–100 | DOI

[15] Y. Chen, L. Zhang, G. Chen, “Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips”, Electrophoresis, 15 (2008)

[16] C. Bouzigues, T. Gacoin, A. Alexandrou, “Biological Applications of Rare-Earth Based Nanoparticles”, ACS Nano, 5 (2011), 8488–8505 | DOI

[17] S. Lazzari, et al., “Colloidal stability of polymeric nanoparticles in biological fluids”, J. Nanoparticle Res., 65 (2012) | DOI

[18] M. Perween, D.B. Parmar, G.R. Bhadu, D.N. Srivastava, “Polymer-graphite composite: A versatile use and throw plastic chip electrode”, Analyst., 139:22 (2014), 5919–5926 | DOI

[19] X. Wang, P. Wang, Y. Jiang, Q. Su, J. Zheng, “Facile surface modification of silica nanoparticles with a combination of noncovalent and covalent methods for composites application”, Compos. Sci. Technol., 104 (2014), 1–8 | DOI

[20] J.H. Sung, H.S. Kim, H.J. Jin, H.J. Choi, I.J. Chin, “Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites”, Macromolecules, 37 (2004), 9899–9902 | DOI

[21] L. Zhang, et al., “Core-shell nanospheres to achieve ultralow friction polymer nanocomposites with superior mechanical properties”, Nanoscale, 254 (2019)

[22] W.-K. Kuo, H.-P. Weng, J.-J. Hsu, H. Yu, “Photonic Crystal-Based Sensors for Detecting Alcohol Concentration”, Appl. Sci., 6 (2016), 67 | DOI

[23] S.Y. Lin, et al., “A three-dimensional photonic crystal operating at infrared wavelengths”, Nature, 394 (1998), 251–253 | DOI

[24] A. Bearzotti, et al., “Alcohol vapor sensory properties of nanostructured conjugated polymers”, J. Phys. Condens. Matter, 65 (2008)

[25] K. Gipson, K. Stevens, P. Brown, J. Ballato, “Infrared spectroscopic characterization of photoluminescent polymer nanocomposites”, J. Spectrosc., 11 (2015), 9 | DOI

[26] I. Venditti, “Gold nanoparticles in photonic crystals applications: A review”, Materials (Basel), 10 (2017), 97 | DOI

[27] H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications”, Adv. Mater., 23 (2011), 2675–2680 | DOI

[28] B. Shao, et al., “Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF 4?: Yb 3+, Er 3+ Nanoparticles”, ACS Appl. Mater. Interfaces, 7 (2015), 25211–25218 | DOI

[29] D. Bi, et al., “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%”, Nat. Energy, 9 (2016)

[30] M.K. Assadi, et al., “Enhancing the efficiency of luminescent solar concentrators (LSCs)”, Appl. Phys. A Mater. Sci. Process, 28 (2016)

[31] L. Xu, et al., “Increasing the Efficiency of Organic Dye-Sensitized Solar Cells over 10.3% Using Locally Ordered Inverse Opal Nanostructures in the Photoelectrode”, Adv. Funct. Mater., 28 (2018), 1706291 | DOI

[32] X. Huang, S. Han, W. Huang, X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters.”, Chem. Soc. Rev., 42 (2013), 173–201 | DOI

[33] R. D'Amato, I. Venditti, M.V. Russo, M. Falconieri, “Growth control and long-range self-assembly of poly(methyl methacrylate) nanospheres”, J. Appl. Polym. Sci., 102 (2006), 4493–4499 | DOI

[34] R. De Angelis, et al., “From nanospheres to microribbons: Self-assembled Eosin Y doped PMMA nanoparticles as photonic crystals”, J. Colloid Interface Sci., 414 (2014), 24–32 | DOI

[35] I.V. Nemtsev, O.V. Shabanova, A.V. Shabanov, “Electron microscopy investigation of polymethylmethacrylate spherical particles artificial opals based on it”, Sib. J. Sci. Technol., 1 (2012), 126–129

[36] O.V. Shabanova, M.A. Korshunov, I.V. Nemtsev, A.V. Shabanov, “Features of self-assembly of opal-like structures based on poly(methyl methacrylate) submicron dispersions”, Nanotechnologies Russ., 11 (2016), 633–639 | DOI

[37] T.A. Taton, D.J. Norris, “Defective promise in photonics”, Nature, 416 (2002), 685–686 | DOI

[38] T.Y. Kwon, J.Y. Ha, J.N. Chun, J.S. Son, K.H. Kim, “Effects of prepolymerized particle size and polymerization kinetics on volumetric shrinkage of dental modeling resins”, Biomed Res. Int., 14 (2014), 6 | DOI

[39] O.V. Shabanova, A.V. Shabanov, I.V. Nemtsev, “Research of conditions of synthesis of nanoscale monodisperse spherical particles of poly-methylmethacrylate”, Siberian journal of science and technology, 4 (2011), 201–205

[40] A. Dukhin, S. Parlia, P. Somasundaran, “Rheology of non-Newtonian liquid mixtures and the role of molecular chain length”, J. Colloid Interface Sci., 560 (2020), 492–501 | DOI

[41] I.V. Nemtsev, I.A. Tambasov, A.A. Ivanenko, V.Y. Zyryanov, “Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal”, Photonics Nanostructures – Fundam. Appl., 28 (2018), 37–44 | DOI

[42] I.V. Nemtsev, O.V. Shabanova, N.P. Shestakov, A.V. Cherepakhin, Y.Y. Zyryanov, “Morphology stability of polymethylmethacrylate nanospheres formed in water-acetone dispersion medium”, Appl. Phys. A, 125 (2019), 738–750 | DOI