Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_2_a2, author = {Ehsan Lotfali Ghasab and Hamid Majani and Ghasem Soleimani Rad}, title = {Fixed points of set-valued $F$-contraction operators in quasi-ordered metric spaces with an application to integral equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {150--158}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a2/} }
TY - JOUR AU - Ehsan Lotfali Ghasab AU - Hamid Majani AU - Ghasem Soleimani Rad TI - Fixed points of set-valued $F$-contraction operators in quasi-ordered metric spaces with an application to integral equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 150 EP - 158 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a2/ LA - en ID - JSFU_2021_14_2_a2 ER -
%0 Journal Article %A Ehsan Lotfali Ghasab %A Hamid Majani %A Ghasem Soleimani Rad %T Fixed points of set-valued $F$-contraction operators in quasi-ordered metric spaces with an application to integral equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 150-158 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a2/ %G en %F JSFU_2021_14_2_a2
Ehsan Lotfali Ghasab; Hamid Majani; Ghasem Soleimani Rad. Fixed points of set-valued $F$-contraction operators in quasi-ordered metric spaces with an application to integral equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 150-158. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a2/
[1] R.P. Agarwal, M.A. El-Gebeily, D.O'Regan, “Generalized contractions in partially ordered metric spaces”, Appl. Anal., 87 (2008), 1–8 | DOI | MR
[2] A. Amini-Harandi, “Fixed point theory for set-valued quasi-contraction maps in metric spaces”, Appl. Math. Lett., 24 (2011), 1791–1794 | DOI | MR | Zbl
[3] S. Banach, “Surles operations dans les ensembles abstraits et leurs application auxequations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl
[4] T.G. Bhaskar, V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., 65 (2006), 1379–1393 | DOI | MR | Zbl
[5] A. Bielecki, “Une remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des equations differentielles ordinaires”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 4 (1956), 261–264 | MR | Zbl
[6] Lj.Ćirić, “Fixed points for generalized multi-valued contractions”, Math. Ves., 24 (1972), 265–272 | MR | Zbl
[7] E.L. Ghasab, H. Majani, E. Karapinar, G. Soleimani Rad, Adv. Math. Phys., 2020 (2020), 9452350, New fixed point results in $F$-quasi-metric spaces and an application | DOI | MR
[8] Z. Kadelburg, S. Radenović, “Notes on some recent papers concerning $F$-contractions in $b$-metric spaces”, Construct. Math. Anal., 1 (2018), 108–112 | DOI | MR | Zbl
[9] H.P. Masiha, F. Sabetghadam, “Fixed point results for multi-valued operators in quasi-ordered metric spaces”, Appl. Math. Lett., 25 (2012), 1856–1861 | DOI | MR | Zbl
[10] S.B. Nadler, “Multi-valued contraction mappings”, Pacific J. Math., 30 (1969), 475–488 | DOI | MR | Zbl
[11] J.J. Nieto, R. Rodriguez-Lopez, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order, 22 (2005), 223–239 | DOI | MR | Zbl
[12] A.C.M. Ran, M.C.B. Reurings, “A fixed point theorem in partially ordered sets and some applications to matrix equations”, Proc. Amer. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl
[13] R. Saadati, S.M. Vaezpour, “Monotone generalized weak contractions in partially ordered metric spaces”, Fixed Point Theory, 11 (2010), 375–382 | MR | Zbl
[14] D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 2012 (2012), 94 | DOI | MR | Zbl
[15] D. Wardowski, “Solving existence problems via $F$-contractions”, Proc. Amer. Math. Soc., 146 (2018), 1585–1598 | DOI | MR | Zbl