Modelling the ionic conductivity of nanopores with electrically conductive surface
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 74-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The ionic conductivity of nanopores with electrically conductive surface is investigated theoretically. The generalization of two-dimensional (2D) Space–charge model to calculating the ion transport under the applied potential gradient in a nanopore with constant surface potential is proposed for the first time. The results are compared with one-dimensional (1D) Uniform potential model, which is derived from the Space–charge model by assuming the independence of potential, ion concentrations, and pressure on the radial coordinate. We have found that the increase of surface potential magnitude leads to the enhancement of conductivity due to the increase of counter–ion concentration inside the nanopore. It is shown that the 1D and 2D models provide close results when the pore radius is smaller than the Debye length. Otherwise, the 1D model essentially overestimates the ionic conductivity. According to the 2D model, the ionic conductivity decreases with increasing the nanopore radius, while the 1D model predicts the opposite trend, which is not physically correct.
Keywords: nanopore, ionic conductivity, Space charge model, Uniform potential model.
@article{JSFU_2021_14_1_a8,
     author = {Artur I. Krom and Maria I. Medvedeva and Ilya I. Ryzhkov},
     title = {Modelling the ionic conductivity of nanopores with electrically conductive surface},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/}
}
TY  - JOUR
AU  - Artur I. Krom
AU  - Maria I. Medvedeva
AU  - Ilya I. Ryzhkov
TI  - Modelling the ionic conductivity of nanopores with electrically conductive surface
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 74
EP  - 86
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/
LA  - en
ID  - JSFU_2021_14_1_a8
ER  - 
%0 Journal Article
%A Artur I. Krom
%A Maria I. Medvedeva
%A Ilya I. Ryzhkov
%T Modelling the ionic conductivity of nanopores with electrically conductive surface
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 74-86
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/
%G en
%F JSFU_2021_14_1_a8
Artur I. Krom; Maria I. Medvedeva; Ilya I. Ryzhkov. Modelling the ionic conductivity of nanopores with electrically conductive surface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 74-86. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/

[1] H. Strathmann, Ion-exchange membrane separation processes, Elsevier, Amsterdam–Boston, 2004

[2] A. Figoli, J. Hoinkis, S.A. Altinkaya, J. Bundschuh, Application of nanotechnology in membranes for water treatment, CRC Press, 2017

[3] A. Cipollina, G. Micale, Sustainable energy from salinity gradients, Elsevier/Woodhead Publishing, 2016

[4] F.G.Bǎnicǎ, Chemical sensors and biosensors: fundamentals and applications, John Wiley Sons, Chichester, UK, 2012

[5] W. Sparreboom, A. van den Berg, J.C.T. Eijkel, “Principles and applications of nanofluidic transport”, Nature nanotech., 4 (2009), 713–720 | DOI

[6] Z.S. Siwy, S. Howorka, “Engineered voltage–responsive nanopores”, Chem. Soc. Rev., 39 (2010), 1115–1132 | DOI

[7] X. Hou, W. Guo, L. Jiang, “Biomimetic smart nanopores and nanochannels”, Chem. Soc. Rev., 40 (2011), 2385–2401 | DOI

[8] H. Strathmann, “Electrodialysis, a mature technology with a multitude of new applications”, Desalination, 264 (2010), 268–288 | DOI

[9] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, “Review on the science and technology of water desalination by capacitive deionization”, Progress in Mater. Sci., 58 (2013), 1388–1442 | DOI

[10] L. Zhang, S.R. Chae, Z. Hendren, J.S. Park, M.R. Wiesner, “Recent advances in proton exchange membranes for fuel cell applications”, Chem. Eng. J., 204-206 (2012), 87–97 | DOI

[11] G.B. Westermann–Clark, J.L. Anderson, “Experimental verification of the Space–Charge model for electrokinetics in charged microporous membranes”, J. Electrochem. Soc., 130 (1983), 839–847 | DOI

[12] R. Lteif, L. Dammak, C. Larchet, B. Auclair, “Conductivité électrique membranaire: étude de l'effet de la concentration, de la nature de l'électrolyte et de la structure membranaire”, Europ. Polymer J., 35 (1999), 1187–1195 | DOI

[13] K. Yazda, S. Tahir, T. Michel, B. Loubet, M. Manghi, J. Bentin, F. Picaud, J. Palmeri, F. Henn, V. Jourdain, “Voltage–activated transport of ions through single–walled carbon nanotubes”, Nanoscale, 9 (2017), 11976–11986 | DOI

[14] C.R. Martin, M. Nishizawa, K. Jirage, M. Kang, S.B. Lee, “Controlling ion–transport selectivity in gold nanotubule membranes”, Adv. Mater., 13 (2001), 1351–1362 | DOI

[15] P. Gao, C.R. Martin, “Voltage charging enhances ionic conductivity in gold nanotube membranes”, ACS Nano, 8 (2014), 8266–8272 | DOI

[16] D.V. Lebedev, V.S. Solodovnichenko, M.M. Simunin, I.I. Ryzhkov, “Effect of electric field on ion transport in nanoporous membranes with conductive surface”, Petrol. Chem., 58:6 (2018), 474–481 | DOI

[17] R.J. Gross, J.F. Osterle, “Membrane transport characteristics of ultrafine capillaries”, J. Chem. Phys., 49 (1968), 228–234 | DOI

[18] A. Szymczyk, P. Fievet, B. Aoubiza, C. Simon, J. Pagetti, “An application of the space charge model to the electrolyte conductivity inside a charged microporous membrane”, J. Membr. Sci., 161 (1999), 275–285 | DOI

[19] P.B. Peters, R. van Roij, M.Z. Bazant, P.M. Biesheuvel, “Analysis of electrolyte transport through charged nanopores”, Phys. Rev. E, 93 (2016), 053108 | DOI

[20] P.M. Biesheuvel, M.Z. Bazant, “Analysis of ionic conductance of carbon nanotubes”, Phys. Rev. E, 94 (2016), 050601 | DOI

[21] M.Z. Bazant, T.M. Squires, “Induced–charge electrokinetic phenomena”, Curr. Op. Coll. Inter. Sci., 15 (2010), 203–213 | DOI

[22] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Shiverskiy, M.M. Simunin, “Induced–charge enhancement of the diffusion potential in membranes with polarizable nanopores”, Phys. Rev. Lett., 119 (2017), 226001 | DOI

[23] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Minakov, M.M. Simunin, “On the origin of membrane potential in membranes with polarizable nanopores”, J. Membrane Science, 549 (2018), 616–630 | DOI

[24] I.I. Ryzhkov, A.S. Vyatkin, A.V. Minakov, “Theoretical study of electrolyte diffusion through polarizable nanopores”, J. Siber. Fed. Univer.: Math. Phys., 11:4 (2018), 494–504 | DOI

[25] I.I. Ryzhkov, A.S. Vyatkin, M.I. Medvedeva, “Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface”, J. Siber. Fed. Univer.: Math. Phys., 12:5 (2019), 579–589 | DOI

[26] L. Zhang, P.M. Biesheuvel, I.I. Ryzhkov, “Theory of ion and water transport in electron–conducting membrane pores with pH-dependent chemical charge”, Physical Review Applied, 12 (2019), 014039 | DOI

[27] I.I. Ryzhkov, A.S. Vyatkin, E.V. Mikhlina, “Modelling of conductive nanoporous membranes with switchable ionic selectivity”, Membranes and Membrane Technologies, 2 (2020), 10–19 | DOI