Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_1_a8, author = {Artur I. Krom and Maria I. Medvedeva and Ilya I. Ryzhkov}, title = {Modelling the ionic conductivity of nanopores with electrically conductive surface}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {74--86}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/} }
TY - JOUR AU - Artur I. Krom AU - Maria I. Medvedeva AU - Ilya I. Ryzhkov TI - Modelling the ionic conductivity of nanopores with electrically conductive surface JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 74 EP - 86 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/ LA - en ID - JSFU_2021_14_1_a8 ER -
%0 Journal Article %A Artur I. Krom %A Maria I. Medvedeva %A Ilya I. Ryzhkov %T Modelling the ionic conductivity of nanopores with electrically conductive surface %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 74-86 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/ %G en %F JSFU_2021_14_1_a8
Artur I. Krom; Maria I. Medvedeva; Ilya I. Ryzhkov. Modelling the ionic conductivity of nanopores with electrically conductive surface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 74-86. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a8/
[1] H. Strathmann, Ion-exchange membrane separation processes, Elsevier, Amsterdam–Boston, 2004
[2] A. Figoli, J. Hoinkis, S.A. Altinkaya, J. Bundschuh, Application of nanotechnology in membranes for water treatment, CRC Press, 2017
[3] A. Cipollina, G. Micale, Sustainable energy from salinity gradients, Elsevier/Woodhead Publishing, 2016
[4] F.G.Bǎnicǎ, Chemical sensors and biosensors: fundamentals and applications, John Wiley Sons, Chichester, UK, 2012
[5] W. Sparreboom, A. van den Berg, J.C.T. Eijkel, “Principles and applications of nanofluidic transport”, Nature nanotech., 4 (2009), 713–720 | DOI
[6] Z.S. Siwy, S. Howorka, “Engineered voltage–responsive nanopores”, Chem. Soc. Rev., 39 (2010), 1115–1132 | DOI
[7] X. Hou, W. Guo, L. Jiang, “Biomimetic smart nanopores and nanochannels”, Chem. Soc. Rev., 40 (2011), 2385–2401 | DOI
[8] H. Strathmann, “Electrodialysis, a mature technology with a multitude of new applications”, Desalination, 264 (2010), 268–288 | DOI
[9] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, “Review on the science and technology of water desalination by capacitive deionization”, Progress in Mater. Sci., 58 (2013), 1388–1442 | DOI
[10] L. Zhang, S.R. Chae, Z. Hendren, J.S. Park, M.R. Wiesner, “Recent advances in proton exchange membranes for fuel cell applications”, Chem. Eng. J., 204-206 (2012), 87–97 | DOI
[11] G.B. Westermann–Clark, J.L. Anderson, “Experimental verification of the Space–Charge model for electrokinetics in charged microporous membranes”, J. Electrochem. Soc., 130 (1983), 839–847 | DOI
[12] R. Lteif, L. Dammak, C. Larchet, B. Auclair, “Conductivité électrique membranaire: étude de l'effet de la concentration, de la nature de l'électrolyte et de la structure membranaire”, Europ. Polymer J., 35 (1999), 1187–1195 | DOI
[13] K. Yazda, S. Tahir, T. Michel, B. Loubet, M. Manghi, J. Bentin, F. Picaud, J. Palmeri, F. Henn, V. Jourdain, “Voltage–activated transport of ions through single–walled carbon nanotubes”, Nanoscale, 9 (2017), 11976–11986 | DOI
[14] C.R. Martin, M. Nishizawa, K. Jirage, M. Kang, S.B. Lee, “Controlling ion–transport selectivity in gold nanotubule membranes”, Adv. Mater., 13 (2001), 1351–1362 | DOI
[15] P. Gao, C.R. Martin, “Voltage charging enhances ionic conductivity in gold nanotube membranes”, ACS Nano, 8 (2014), 8266–8272 | DOI
[16] D.V. Lebedev, V.S. Solodovnichenko, M.M. Simunin, I.I. Ryzhkov, “Effect of electric field on ion transport in nanoporous membranes with conductive surface”, Petrol. Chem., 58:6 (2018), 474–481 | DOI
[17] R.J. Gross, J.F. Osterle, “Membrane transport characteristics of ultrafine capillaries”, J. Chem. Phys., 49 (1968), 228–234 | DOI
[18] A. Szymczyk, P. Fievet, B. Aoubiza, C. Simon, J. Pagetti, “An application of the space charge model to the electrolyte conductivity inside a charged microporous membrane”, J. Membr. Sci., 161 (1999), 275–285 | DOI
[19] P.B. Peters, R. van Roij, M.Z. Bazant, P.M. Biesheuvel, “Analysis of electrolyte transport through charged nanopores”, Phys. Rev. E, 93 (2016), 053108 | DOI
[20] P.M. Biesheuvel, M.Z. Bazant, “Analysis of ionic conductance of carbon nanotubes”, Phys. Rev. E, 94 (2016), 050601 | DOI
[21] M.Z. Bazant, T.M. Squires, “Induced–charge electrokinetic phenomena”, Curr. Op. Coll. Inter. Sci., 15 (2010), 203–213 | DOI
[22] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Shiverskiy, M.M. Simunin, “Induced–charge enhancement of the diffusion potential in membranes with polarizable nanopores”, Phys. Rev. Lett., 119 (2017), 226001 | DOI
[23] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Minakov, M.M. Simunin, “On the origin of membrane potential in membranes with polarizable nanopores”, J. Membrane Science, 549 (2018), 616–630 | DOI
[24] I.I. Ryzhkov, A.S. Vyatkin, A.V. Minakov, “Theoretical study of electrolyte diffusion through polarizable nanopores”, J. Siber. Fed. Univer.: Math. Phys., 11:4 (2018), 494–504 | DOI
[25] I.I. Ryzhkov, A.S. Vyatkin, M.I. Medvedeva, “Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface”, J. Siber. Fed. Univer.: Math. Phys., 12:5 (2019), 579–589 | DOI
[26] L. Zhang, P.M. Biesheuvel, I.I. Ryzhkov, “Theory of ion and water transport in electron–conducting membrane pores with pH-dependent chemical charge”, Physical Review Applied, 12 (2019), 014039 | DOI
[27] I.I. Ryzhkov, A.S. Vyatkin, E.V. Mikhlina, “Modelling of conductive nanoporous membranes with switchable ionic selectivity”, Membranes and Membrane Technologies, 2 (2020), 10–19 | DOI