Construction of exact solution describing three-layer flows with evaporation in a horizontal channel
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 57-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the flow in a three-layer system "liquid–liquid–gas" in a horizontal channel with solid impermeable walls.The evaporation process at the thermocapillary interface of the liquid and gas is taken into account. The Soret and Dufour effects are taken into account in the upper layer filled with a gas-vapor mixture. The system of Navier-Stokes equations in the Boussinesq approximation is used as a mathematical model. A temperature regime is set on the channel walls. Liquid evaporation is modeled using the conditions at the liquid-gas interface. Exact solution of a special type describing the flow in a three-layer system is constructed. The velocity profiles are presented on the example of the "silicone oil–water–air" system for various values of gas flow rate, longitudinal temperature gradients at the system boundaries, thicknesses of liquid and gas-vapor layers.
Keywords: three-layer system, evaporation, Soret effect
Mots-clés : exact solutions, Dufour effect.
@article{JSFU_2021_14_1_a6,
     author = {Ekaterina V. Rezanova},
     title = {Construction of exact solution describing three-layer flows with evaporation in a horizontal channel},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {57--68},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a6/}
}
TY  - JOUR
AU  - Ekaterina V. Rezanova
TI  - Construction of exact solution describing three-layer flows with evaporation in a horizontal channel
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 57
EP  - 68
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a6/
LA  - en
ID  - JSFU_2021_14_1_a6
ER  - 
%0 Journal Article
%A Ekaterina V. Rezanova
%T Construction of exact solution describing three-layer flows with evaporation in a horizontal channel
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 57-68
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a6/
%G en
%F JSFU_2021_14_1_a6
Ekaterina V. Rezanova. Construction of exact solution describing three-layer flows with evaporation in a horizontal channel. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a6/

[1] V.B. Bekezhanova, O.N. Goncharova, “Problems of evaporative convection (Review)”, Fluid Dynamics, 53 (2018), 69–102 | DOI

[2] Y.V. Lyulin et.al., “Measurement of evaporation rate from surface to surface liquid layer under the gas flow”, Pis'ma v ZhETF, 41:14 (2015), 1–7

[3] B. Scheid, “Onset of thermal ripples at the interface of an evaporating liquid under a flow of inert gas”, Exp. Fluids, 52 (2012), 1107–1119

[4] V.B. Bekezhanova, O.N. Goncharova, E.V. Rezanova, I.A. Shrfer, “Stability of two-layer fluid flows with evaporation at the interface”, Fluid Dynamics, 52 (2017), 189–200 | DOI

[5] V.B. Bekezhanova, O.N. Goncharova, I.A. Shefer, “Analysis of an exact solution of problem of the evaporative convection (Review). Part I. Plane case”, Journal of Siberian Federal University. Mathematics and Physics, 11:2 (2018), 178–190 | DOI

[6] V.K. Andreev, Y.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical models of convection, De Gruyter, 2012

[7] G.Z. Gershuni, E.M. Zhukhovitsky, Convective stability of an incompressible fluid, Nauka, M., 1972 (in Russian)

[8] O.N. Goncharova, E.V. Rezanova, “Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface”, J. of Appl. Mech. and Tech. Phys., 55:2 (2014), 247–257

[9] V.K. Andreev, N.L. Sobachkina, The movement of a binary mixture in flat and cylindrical areas, Siberian federal university, Krasnoyarsk, 2012 (in Russian)

[10] M.I. Shliomis, V.I. Yakushin, “Convection in a two-layer binary system with evaporation”, Uch. Zap. Perm. Gos. Univ., Ser. Gidrodyn., 4 (1972), 129–140 (in Russian)

[11] G.A. Ostroumov, Free convection under the conditions of the internal problem, Gos. izd-vo tehniko-teoreticheskoy lieraturi, M.–Leningrad, 1952 (in Russian)

[12] R.V. Birikh, “About thermocapillary convection in a horizontal liquid layer”, PMTF, 3 (1966), 69–72 (in Russian)

[13] G.N. Antonov, “Sur la tension superficielle à la limite de deux couches”, J. Chim. Phys., 5 (1907), 372–385

[14] I. Prigozhin, Chemical thermodynamics, Nauka, Novosibirsk, 1966 (in Russian)

[15] T.A. Ghezzehei, R.C. Trautz, S. Finsterle, et al., “Modeling coupled evaporation and seepage in ventilated cavities”, Vadose Zone J., 3 (2004), 806–818

[16] V.B. Bekezhanova, O.N. Goncharova, N.A. Ivanova, D.S. Klyuev, “Instability of a two-layer system with deformable interface under laser beam heating”, J. of Siberian Federal University. Math. and Phys., 12:5 (2019), 543–550 | DOI