Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_1_a5, author = {Margarita A. Tokareva and Alexander A. Papin}, title = {Mathematical model of fluids motion in poroelastic snow-ice cover}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {47--56}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/} }
TY - JOUR AU - Margarita A. Tokareva AU - Alexander A. Papin TI - Mathematical model of fluids motion in poroelastic snow-ice cover JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 47 EP - 56 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/ LA - en ID - JSFU_2021_14_1_a5 ER -
%0 Journal Article %A Margarita A. Tokareva %A Alexander A. Papin %T Mathematical model of fluids motion in poroelastic snow-ice cover %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 47-56 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/ %G en %F JSFU_2021_14_1_a5
Margarita A. Tokareva; Alexander A. Papin. Mathematical model of fluids motion in poroelastic snow-ice cover. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/
[1] L.S. Kuchment, P. Romanov, A.N. Gelfan, V.N. Demidov, “Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation”, Hydrol. Earth Syst. Sci., 14 (2010), 339–350 | DOI
[2] A.N. Gelfan, J.W. Pomeroy, L.S. Kuchment, “Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt”, Journal of Hydrometeorology, 5 (2004), 785–803
[3] M. Sturm, J. Holmgren, G. Liston, “A seasonal snow cover classification-system for local to global applications”, Journal of Climate, 8:5 (1995), 1261–1283 | DOI
[4] S.C. Colbeck, “A theory of water percolation in snow”, Journal Glaciol, 11:63 (1972), 369–385
[5] J.M.N.T. Gray, “Water movement in wet snow”, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 354:1707 (1996), 465–500
[6] S. Sellers, “Theory of water transport in melting snow with a moving surface”, Cold Regions Science and Technology, 31:1 (2000), 47–57 | DOI
[7] R.I. Nigmatullin, Dynamics of multiphase media, v. 1, Nauka, M., 1987 (in Russian)
[8] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary-Value Problems of the Mechanics of Inhomogeneous Fluids, Nauka, Novosibirsk, 1983 (in Russian)
[9] K. Terzaghi, Theoretical Soil Mechanics, New York, 1943
[10] V.V. Vedernikov, V.N. Nikolaevsii, “Mechanics equations for porous medium saturated by a two-phase liquid”, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, 5 (1978), 769–773
[11] Y. Geng, L. Zhang, “Bifurcations of traveling wave solutions for the magma equation”, Applied Mathematics and computation, 217 (2010), 1741–1748 | DOI
[12] G. Simpson, M. Spiegelman, M.I. Weinstein, “Degenerate dispersive equations arising in the study of magma dynamics”, Nonlinearity, 20 (2007), 21–49
[13] A. Friedman, “Cancer as Multifaceted Disease”, Math. Model. Nat. Phenom., 7 (2012)
[14] J.A.D. Connolly, Y.Y. Podladchikov, “Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins”, Tectonophysics, 324 (2000), 131–135
[15] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972
[16] A.A. Papin, Y.Y. Podladchikov, “Isothermal motion of two immiscible fluids in poroelastic medium”, Izvestiya Altai State University, 1/2(85) (2015), 131–135 (in Russian) | DOI
[17] A. Fowler, Mathematical Geoscience, Springer-Verlag, London Limited, 2011
[18] A.A. Papin, M.A. Tokareva, “On Local Solvability of the System of the Equations of One Dimensional Motion of Magma”, Journal of Siberian Federal University. Mathematics and Physics, 10:3 (2017), 362–371 | DOI
[19] M.A. Tokareva, A.A. Papin, “Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium”, Journal of Applied and Industrial Mathematics, 13:2 (2019), 350–362 | DOI
[20] M.N. Koleva, L.G. Vulkov, “Numerical analysis of one dimensional motion of magma without mass forces”, Journal of Computational and Applied Mathematics, 366 (2020), 112338 | DOI
[21] J. Escher, M. Hillairet, P. Laurencot, C. Walker, “Thin film equations with soluble surfactant and gravity: modeling and stability of steady states”, Mathematische Nachrichten, 285 (2012), 210–222
[22] C. Morency et al., “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research: Solid Earth, 112:B10 (2007)
[23] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (in Russian)