Mathematical model of fluids motion in poroelastic snow-ice cover
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 47-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of a snow-ice cover is considered within the theory of poroelasticity. The snow-ice cover is modeled by a three-phase medium consisting of water, air and ice. The governing equations are the equations of mass conservation for each phase with phase transitions, the equations of conservation of phase momentum in the form of Darcy's law, the equation of conservation of momentum of the whole system, the rheological equation for porosity and the equation of heat balance of snow. In the full formulation the liquid and air pressures are functions of the temperature and the corresponding densities, and the viscosity and compressibility coefficients of ice are functions of the temperature. The problem of two-dimensional nonstationary filtration of water in a thin poroelastic ice plate is considered in the model case. The solution is obtained in quadratures.
Keywords: poroelasticity, porosity, snow-ice cover, thin layer.
@article{JSFU_2021_14_1_a5,
     author = {Margarita A. Tokareva and Alexander A. Papin},
     title = {Mathematical model of fluids motion in poroelastic snow-ice cover},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/}
}
TY  - JOUR
AU  - Margarita A. Tokareva
AU  - Alexander A. Papin
TI  - Mathematical model of fluids motion in poroelastic snow-ice cover
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 47
EP  - 56
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/
LA  - en
ID  - JSFU_2021_14_1_a5
ER  - 
%0 Journal Article
%A Margarita A. Tokareva
%A Alexander A. Papin
%T Mathematical model of fluids motion in poroelastic snow-ice cover
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 47-56
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/
%G en
%F JSFU_2021_14_1_a5
Margarita A. Tokareva; Alexander A. Papin. Mathematical model of fluids motion in poroelastic snow-ice cover. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a5/

[1] L.S. Kuchment, P. Romanov, A.N. Gelfan, V.N. Demidov, “Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation”, Hydrol. Earth Syst. Sci., 14 (2010), 339–350 | DOI

[2] A.N. Gelfan, J.W. Pomeroy, L.S. Kuchment, “Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt”, Journal of Hydrometeorology, 5 (2004), 785–803

[3] M. Sturm, J. Holmgren, G. Liston, “A seasonal snow cover classification-system for local to global applications”, Journal of Climate, 8:5 (1995), 1261–1283 | DOI

[4] S.C. Colbeck, “A theory of water percolation in snow”, Journal Glaciol, 11:63 (1972), 369–385

[5] J.M.N.T. Gray, “Water movement in wet snow”, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 354:1707 (1996), 465–500

[6] S. Sellers, “Theory of water transport in melting snow with a moving surface”, Cold Regions Science and Technology, 31:1 (2000), 47–57 | DOI

[7] R.I. Nigmatullin, Dynamics of multiphase media, v. 1, Nauka, M., 1987 (in Russian)

[8] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary-Value Problems of the Mechanics of Inhomogeneous Fluids, Nauka, Novosibirsk, 1983 (in Russian)

[9] K. Terzaghi, Theoretical Soil Mechanics, New York, 1943

[10] V.V. Vedernikov, V.N. Nikolaevsii, “Mechanics equations for porous medium saturated by a two-phase liquid”, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, 5 (1978), 769–773

[11] Y. Geng, L. Zhang, “Bifurcations of traveling wave solutions for the magma equation”, Applied Mathematics and computation, 217 (2010), 1741–1748 | DOI

[12] G. Simpson, M. Spiegelman, M.I. Weinstein, “Degenerate dispersive equations arising in the study of magma dynamics”, Nonlinearity, 20 (2007), 21–49

[13] A. Friedman, “Cancer as Multifaceted Disease”, Math. Model. Nat. Phenom., 7 (2012)

[14] J.A.D. Connolly, Y.Y. Podladchikov, “Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins”, Tectonophysics, 324 (2000), 131–135

[15] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972

[16] A.A. Papin, Y.Y. Podladchikov, “Isothermal motion of two immiscible fluids in poroelastic medium”, Izvestiya Altai State University, 1/2(85) (2015), 131–135 (in Russian) | DOI

[17] A. Fowler, Mathematical Geoscience, Springer-Verlag, London Limited, 2011

[18] A.A. Papin, M.A. Tokareva, “On Local Solvability of the System of the Equations of One Dimensional Motion of Magma”, Journal of Siberian Federal University. Mathematics and Physics, 10:3 (2017), 362–371 | DOI

[19] M.A. Tokareva, A.A. Papin, “Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium”, Journal of Applied and Industrial Mathematics, 13:2 (2019), 350–362 | DOI

[20] M.N. Koleva, L.G. Vulkov, “Numerical analysis of one dimensional motion of magma without mass forces”, Journal of Computational and Applied Mathematics, 366 (2020), 112338 | DOI

[21] J. Escher, M. Hillairet, P. Laurencot, C. Walker, “Thin film equations with soluble surfactant and gravity: modeling and stability of steady states”, Mathematische Nachrichten, 285 (2012), 210–222

[22] C. Morency et al., “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research: Solid Earth, 112:B10 (2007)

[23] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (in Russian)