On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 28-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers equilibrium models of Kirchhoff-Love plates with rigid inclusions of two types. The first type of inclusion is described by three-dimensional sets, the second one corresponds to a cylindrical rigid inclusion, which is perpendicular to the plate's median plane in the initial state. For both models, we suppose that there is a through crack along a fixed part of the inclusion's boundary. On the crack non-penetration conditions are prescribed which correspond to a certain known configuration bending near the crack. The uniqueness solvability of a new problems for a Kirchhoff-Love plate with a flat rigid inclusion is proved. It is proved that when a thickness parameter tends to zero, the problem for a flat rigid inclusion can be represented as a limiting task for a family of variational problems concerning the inclusions of the first type. A solvability of an optimal control problem with a control given by the size of inclusions is proved.
Keywords: variational problem, crack, nonpenetration condition, optimal control problem.
Mots-clés : limit passage
@article{JSFU_2021_14_1_a3,
     author = {Nyurgun P. Lazarev and Galina M. Semenova and Natalya A. Romanova},
     title = {On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a {Kirchhoff-Love} plate with a crack},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {28--41},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/}
}
TY  - JOUR
AU  - Nyurgun P. Lazarev
AU  - Galina M. Semenova
AU  - Natalya A. Romanova
TI  - On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 28
EP  - 41
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/
LA  - en
ID  - JSFU_2021_14_1_a3
ER  - 
%0 Journal Article
%A Nyurgun P. Lazarev
%A Galina M. Semenova
%A Natalya A. Romanova
%T On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 28-41
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/
%G en
%F JSFU_2021_14_1_a3
Nyurgun P. Lazarev; Galina M. Semenova; Natalya A. Romanova. On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 28-41. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/