Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_1_a3, author = {Nyurgun P. Lazarev and Galina M. Semenova and Natalya A. Romanova}, title = {On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a {Kirchhoff-Love} plate with a crack}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {28--41}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/} }
TY - JOUR AU - Nyurgun P. Lazarev AU - Galina M. Semenova AU - Natalya A. Romanova TI - On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 28 EP - 41 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/ LA - en ID - JSFU_2021_14_1_a3 ER -
%0 Journal Article %A Nyurgun P. Lazarev %A Galina M. Semenova %A Natalya A. Romanova %T On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 28-41 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/ %G en %F JSFU_2021_14_1_a3
Nyurgun P. Lazarev; Galina M. Semenova; Natalya A. Romanova. On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 28-41. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/
[1] A. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Method Appl. Sci., 33:16 (2010), 1955–1967
[2] A.M. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191
[3] F. Dal Corso, D. Bigoni, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I, Full-field solution and asymptotics”, J. Mech Phys. Solids, 56:3 (2008), 815–838
[4] I.I. Il'ina, V.V. Sil'vestrov, “The problem of a thin interfacial inclusion detached from the medium along one side”, Mech. Solids, 40:3 (2005), 123–133
[5] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730
[6] E.M. Rudoy, “The Griffith formula and Cherepanov-Rice integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529
[7] Z.M. Xiao, B.J. Chen, “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, Int. J. Fract., 108:3 (2001), 193–205
[8] R.V. Namm, G.I. Tsoy, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. and Math. Phys., 59 (2019), 659–666 | DOI
[9] E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:19 (2017) | DOI
[10] N. Lazarev, H. Itou, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff-Love plates with a crack”, Math. Mech. Solids, 24:12 (2019), 3743–3752 | DOI
[11] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178 (2018), 614–626 | DOI
[12] N.P. Lazarev, H. Itou, N.V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80
[13] N.V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates”, J. Appl. Indust. Math., 4:4 (2010), 526–538
[14] E.M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2014), 1923–1937
[15] A.M. Khludnev, “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech. A Solids, 29:3 (2010), 392–399
[16] V.V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105
[17] V.V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Tech. Phy., 56 (2015), 321–329
[18] I.V. Frankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Industr. Math., 10:3 (2016), 333–340 | DOI
[19] A.M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Indust. Math., 5:4 (2011), 582–594
[20] N. Lazarev, “Existence of an optimal size of a delaminated rigid inclusion embedded in the Kirchhoff-Love plate”, Bound Value Probl., 2015 | DOI
[21] A.M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010 (in Russian)
[22] A.M. Khludnev, A.A. Novonty, J. Sokolowsky, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732
[23] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509
[24] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT-Press, Southampton, 2000
[25] N.P. Lazarev, V.V. Everstov, N.A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff-Love plates with nonpenetration conditions for known configurations of plate edges”, Journal of Siberian Federal University Mathematics and Physics, 12:6 (2019), 674–686 | DOI
[26] A.M. Khludnev, “Problem of a crack on the boundary of a rigid inclusion in an elastic plate”, Mech. Solids, 45:5 (2010), 733–742
[27] C. Baiocchi, A. Capello, Variational and Quasivariational Inequalities: Application to free boundary problems, Wiley, New York, 1984
[28] V.G. Maz'ja, Sobolev Spaces, Springer Series in Soviet Mathematics, Berlin, 1985