On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 28-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers equilibrium models of Kirchhoff-Love plates with rigid inclusions of two types. The first type of inclusion is described by three-dimensional sets, the second one corresponds to a cylindrical rigid inclusion, which is perpendicular to the plate's median plane in the initial state. For both models, we suppose that there is a through crack along a fixed part of the inclusion's boundary. On the crack non-penetration conditions are prescribed which correspond to a certain known configuration bending near the crack. The uniqueness solvability of a new problems for a Kirchhoff-Love plate with a flat rigid inclusion is proved. It is proved that when a thickness parameter tends to zero, the problem for a flat rigid inclusion can be represented as a limiting task for a family of variational problems concerning the inclusions of the first type. A solvability of an optimal control problem with a control given by the size of inclusions is proved.
Keywords: variational problem, crack, nonpenetration condition, optimal control problem.
Mots-clés : limit passage
@article{JSFU_2021_14_1_a3,
     author = {Nyurgun P. Lazarev and Galina M. Semenova and Natalya A. Romanova},
     title = {On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a {Kirchhoff-Love} plate with a crack},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {28--41},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/}
}
TY  - JOUR
AU  - Nyurgun P. Lazarev
AU  - Galina M. Semenova
AU  - Natalya A. Romanova
TI  - On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 28
EP  - 41
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/
LA  - en
ID  - JSFU_2021_14_1_a3
ER  - 
%0 Journal Article
%A Nyurgun P. Lazarev
%A Galina M. Semenova
%A Natalya A. Romanova
%T On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 28-41
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/
%G en
%F JSFU_2021_14_1_a3
Nyurgun P. Lazarev; Galina M. Semenova; Natalya A. Romanova. On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 28-41. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a3/

[1] A. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Method Appl. Sci., 33:16 (2010), 1955–1967

[2] A.M. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191

[3] F. Dal Corso, D. Bigoni, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I, Full-field solution and asymptotics”, J. Mech Phys. Solids, 56:3 (2008), 815–838

[4] I.I. Il'ina, V.V. Sil'vestrov, “The problem of a thin interfacial inclusion detached from the medium along one side”, Mech. Solids, 40:3 (2005), 123–133

[5] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730

[6] E.M. Rudoy, “The Griffith formula and Cherepanov-Rice integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529

[7] Z.M. Xiao, B.J. Chen, “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, Int. J. Fract., 108:3 (2001), 193–205

[8] R.V. Namm, G.I. Tsoy, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. and Math. Phys., 59 (2019), 659–666 | DOI

[9] E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:19 (2017) | DOI

[10] N. Lazarev, H. Itou, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff-Love plates with a crack”, Math. Mech. Solids, 24:12 (2019), 3743–3752 | DOI

[11] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178 (2018), 614–626 | DOI

[12] N.P. Lazarev, H. Itou, N.V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80

[13] N.V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates”, J. Appl. Indust. Math., 4:4 (2010), 526–538

[14] E.M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2014), 1923–1937

[15] A.M. Khludnev, “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech. A Solids, 29:3 (2010), 392–399

[16] V.V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105

[17] V.V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Tech. Phy., 56 (2015), 321–329

[18] I.V. Frankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Industr. Math., 10:3 (2016), 333–340 | DOI

[19] A.M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Indust. Math., 5:4 (2011), 582–594

[20] N. Lazarev, “Existence of an optimal size of a delaminated rigid inclusion embedded in the Kirchhoff-Love plate”, Bound Value Probl., 2015 | DOI

[21] A.M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010 (in Russian)

[22] A.M. Khludnev, A.A. Novonty, J. Sokolowsky, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732

[23] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509

[24] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT-Press, Southampton, 2000

[25] N.P. Lazarev, V.V. Everstov, N.A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff-Love plates with nonpenetration conditions for known configurations of plate edges”, Journal of Siberian Federal University Mathematics and Physics, 12:6 (2019), 674–686 | DOI

[26] A.M. Khludnev, “Problem of a crack on the boundary of a rigid inclusion in an elastic plate”, Mech. Solids, 45:5 (2010), 733–742

[27] C. Baiocchi, A. Capello, Variational and Quasivariational Inequalities: Application to free boundary problems, Wiley, New York, 1984

[28] V.G. Maz'ja, Sobolev Spaces, Springer Series in Soviet Mathematics, Berlin, 1985