A coupled mathematical model for the synthesis of composites
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 708-717.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work proposes a model for synthesizing a composite "metallic matrix–reinforcing inclusions". The solution is based on two algorithms demonstrating similar results. It is shown that, like in classic models of combustion, there is a domain of model parameters where a transition to the stationary regime is possible. It is demonstrated that taking into account the thermal and mechanical processes alters the effective properties (thermal capacity and thermal effects of the reaction) and provokes the formation of a new heat source conditioned by the interaction of different physical processes.
Keywords: composite synthesis, pulsed heating, consecutive-parallel reactions, comparison of algorithms.
@article{JSFU_2020_13_6_a4,
     author = {Anna G. Knyazeva and Natalia V. Bukrina},
     title = {A coupled mathematical model for the synthesis of composites},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {708--717},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a4/}
}
TY  - JOUR
AU  - Anna G. Knyazeva
AU  - Natalia V. Bukrina
TI  - A coupled mathematical model for the synthesis of composites
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 708
EP  - 717
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a4/
LA  - en
ID  - JSFU_2020_13_6_a4
ER  - 
%0 Journal Article
%A Anna G. Knyazeva
%A Natalia V. Bukrina
%T A coupled mathematical model for the synthesis of composites
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 708-717
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a4/
%G en
%F JSFU_2020_13_6_a4
Anna G. Knyazeva; Natalia V. Bukrina. A coupled mathematical model for the synthesis of composites. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 708-717. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a4/

[1] S.-G. Son, B.-H. Lee, J.-M. Lee etc., “Low-temperature synthesis of $(TiC + Al_{2}O_{3})/Al$ alloy composites based on dopant-assisted combustion”, J. Alloys Compd., 649 (2015), 409–416 | DOI

[2] Y.M.Z. Ahmed, Z.I. Zakiab, R.K. Bordiac etc., “Simultaneous synthesis and sintering of $TiC/Al_{2}O_{3}$ composite via self propagating synthesis with direct consolidation technique”, Ceram. Int., 42 (2016), 16589–16597 | DOI

[3] D. Horvitz, I. Gotman, E.Y. Gutmanas, etc., “In situ processing of dense $Al_{2}O_{3}-Ti$ aluminide interpenetrating phase composites”, J. Eur. Ceram. Soc., 22 (2002), 947–954 | DOI

[4] A.S. Mukasyan, A.S. Rogachev, “Combustion synthesis: mechanically induced nanostructured materials”, J. Mater. Sci., 52 (2017), 11826–11833 | DOI

[5] S.N. Sorokova, A.G. Knyazeva, “Numerical study of the influence of the technological parameters on the composition and stressed-deformed state of a coating synthesized under electron-beam heating”, Theor. Found. Chem. Engi., 44:2 (2010), 172–185 | DOI

[6] A.G. Knyazeva, “Velocity of the simplest solid-phase chemical reaction front and internal mechanical stresses”, Combust. Explos. Shock Waves, 30:1 (1994), 43–53 | DOI

[7] A.G. Knyazeva, “Solution of the Thermoelasticity Problem in the Form of a Traveling Wave and its Application to Analysis of Possible Regimes of Solid?Phase Transformations”, J. Appl. Mech. Tech. Phys., 44:2 (2003), 164–173 | DOI | MR | Zbl

[8] V.M. Paskonov, V.I. Polezhaev, L.A. Chudov, Numerical modeling of the heat and mass exchange processes, Nauka, M., 1984 (in Russian)

[9] V.N. Demidov, A.G. Knyazeva, “Multistage kinetics of the synthesis $Ti-T_{x}C_{y}$ composite”, Nanoscience and Technology: An International Journal, 10:3 (2019), 195–218 | DOI

[10] A.G. Knyazeva, “Effect of fixing conditions on the heating rate of a specimen”, Combust. Explos. Shock Waves, 36:5 (2000), 582–590 | DOI

[11] A.G. Knyazeva, O.N. Kryukova, “The propagation of solid-phase transformation in a flat layer with due regard to the coupling of thermal and mechanical processes”, Math. modeling, 15:8 (2003), 21–33 (in Russian) | MR | Zbl

[12] A.P. Aldushin, “Stationary propagation of an exothermic-reaction front in a condensed medium”, J. Appl. Mech. Tech. Phys., 15:3 (1974), 96–105

[13] M.B. Borovikov, I.A. Burovoi, U.I. Gol'dshleger, “Combustion wave propagation in systems of sequential reactions with endothermal stages”, Combust. Explos. Shock Waves, 20:3 (1984), 241–248 | DOI

[14] E.A. Nekrasov, A.M. Timokhin, “Theory of thermal wave propagation of multistage reactions described by simple empirical schemes”, Combust. Explos. Shock Waves, 22:4 (1986), 431–437 | DOI

[15] A.P. Aldushin, T.M. Martem'yanova, A.G. Merzhanov ets., “Propagation of the front of an exothermic reaction in condensed mixtures with the interaction of the components through a layer of high-melting product”, Combust. Explos. Shock Waves, 8:2 (1972), 202–212 | DOI