Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_6_a3, author = {Alexander L. Kazakov and Lev F. Spevak and Lee Ming-Gong}, title = {On the construction of solutions to a problem with a free boundary for the non-linear heat equation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {694--707}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a3/} }
TY - JOUR AU - Alexander L. Kazakov AU - Lev F. Spevak AU - Lee Ming-Gong TI - On the construction of solutions to a problem with a free boundary for the non-linear heat equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 694 EP - 707 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a3/ LA - en ID - JSFU_2020_13_6_a3 ER -
%0 Journal Article %A Alexander L. Kazakov %A Lev F. Spevak %A Lee Ming-Gong %T On the construction of solutions to a problem with a free boundary for the non-linear heat equation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 694-707 %V 13 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a3/ %G en %F JSFU_2020_13_6_a3
Alexander L. Kazakov; Lev F. Spevak; Lee Ming-Gong. On the construction of solutions to a problem with a free boundary for the non-linear heat equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 694-707. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a3/
[1] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Blow-up in quasilinear parabolic equations, Walter de Gruyte, Berlin–New York, 1995 | MR | Zbl
[2] J.L. Vazquez, The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007 | MR
[3] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical models of convection, De Gruyter Studies in Mathematical Physics, Berlin, 2012 | MR | Zbl
[4] M. Yu.Filimonov, L.G. Korzunin, A.F. Sidorov, “Approximate methods for solving nonlinear initial boundary-value problems based on special construction of series”, Rus. J. Numer. Anal. Math. Modelling, 8:2 (1993), 101–125 | DOI | MR | Zbl
[5] A.L. Kazakov, O.A. Nefedova, L.F. Spevak, “Solution of the problem of initiating the heat wave for a nonlinear heat conduction equation using the boundary element method”, Comp. Math. Math. Phys., 59:6 (2019), 1015–1029 | DOI | MR | Zbl
[6] P.K. Banerjee, R. Butterfield, Boundary Element Methods in Engineering Science, McGraw-Hill, London, 1981 | MR | Zbl
[7] M. Tanaka, T. Matsumoto, S. Takakuwa, “Dual reciprocity BEM for time-stepping approach to the transient heat conduction problem in nonlinear materials”, Comput. Methods Appl. Mech. Eng., 195 (2006), 4953–4961 | DOI | MR | Zbl
[8] Z.C. Li, M.G. Lee, H.T. Huang, J.Y. Chiang, “Neumann problems of 2D Laplace's equation by method of fundamental solutions”, Appl. Num. Math., 119 (2017), 126–145 | DOI | MR | Zbl
[9] Z.C. Li, J.Y. Chiang, H.T. Huang, M.G. Lee, “The interior field method for Laplace's equation in circular domains with circular holes”, Eng. Anal. Boundary Elem., 67 (2016), 173–185 | DOI | MR | Zbl
[10] M.G. Lee, Z.C. Li, L. Zhang, H.T. Huang, J.Y. Chiang, “Algorithm singularity of the null-field method for Dirichlet problems of Laplace's equation in annular and circular domains”, Eng. Anal. Boundary Elem., 41 (2014), 160–172 | DOI | MR | Zbl
[11] L.C. Wrobel, C.A. Brebbia, D. Nardini, “The dual reciprocity boundary element formulation for transient heat conduction”, Finite elements in water resources VI, Springer-Verlag, Berlin, 1986, 801–811 | MR
[12] L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York–London, 1982 | MR | Zbl
[13] V.K. Andreev, O.V. Kaptsov, V.V. Pukhnachov, V.V. Rodionov, Applications of group-theoretical methods in hydrodynamics, Kluwer Academic Publishers, Dordrecht, 1998 | MR | Zbl
[14] A.D. Polyanin, V.F. Zaitsev, Handbook of nonlinear partial differential equations, Chapman and Hall/CRC, Boca Raton–London–New York, 2011 | MR
[15] V.V. Pukhnachev, “Exact multidimensional solutions of the nonlinear diffusion equation”, J. Appl. Mech. Technical Phys., 36:2 (1995), 169–176 | DOI | MR | Zbl
[16] A.L. Kazakov, “On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation”, Sib. Electronic Math. Reports, 16 (2019), 1057–1068 (in Russian) | DOI | Zbl
[17] A.L. Kazakov, P.A. Kuznetsov, A.A. Lempert, “On a Heat Wave for the Nonlinear Heat Equation: An Existence Theorem and Exact Solution”, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy, Springer, 2020, 223–228 | DOI
[18] A.L. Kazakov, L.F. Spevak, “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Model., 37 (2013), 6918–6928 | DOI | MR | Zbl
[19] A.L. Kazakov, Sv.S. Orlov, S.S. Orlov, “Sonstruction and study of exact solutions to a nonlinear heat equation”, Sib. Math. J., 59:3 (2018), 427–441 | DOI | MR | Zbl
[20] A.L. Kazakov, P.A. Kuznetsov, L.F. Spevak, “Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source”, Journal of Mathematical Sciences, 239:1 (2019), 111–122 | DOI | MR | Zbl