Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_6_a2, author = {Vladimir S. Gerdjikov and Michail D. Todorov}, title = {On asymptotic dynamical regimes of {Manakov} $N$-soliton trains in adiabatic approximation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {678--693}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a2/} }
TY - JOUR AU - Vladimir S. Gerdjikov AU - Michail D. Todorov TI - On asymptotic dynamical regimes of Manakov $N$-soliton trains in adiabatic approximation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 678 EP - 693 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a2/ LA - en ID - JSFU_2020_13_6_a2 ER -
%0 Journal Article %A Vladimir S. Gerdjikov %A Michail D. Todorov %T On asymptotic dynamical regimes of Manakov $N$-soliton trains in adiabatic approximation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 678-693 %V 13 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a2/ %G en %F JSFU_2020_13_6_a2
Vladimir S. Gerdjikov; Michail D. Todorov. On asymptotic dynamical regimes of Manakov $N$-soliton trains in adiabatic approximation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 678-693. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a2/
[1] F. Kh.Abdullaev, B.B. Baizakov, S.A. Darmanyan, V.V. Konotop, M. Salerno, “Nonlinear excitations in arrays of Bose-Einstein condensates”, Phys. Rev. A, 64 (2001), 043606 | DOI
[2] G.P. Agrawal, Nonlinear Fiber Optics, 2nd edn., Academic, San Diego, 1995
[3] D. Anderson, M. Lisak, “Bandwidth limits due to mutual pulse interaction in optical soliton communication systems”, Optics Lett., 11:3 (1986), 174–176 | DOI
[4] J.M. Arnold, “Complex Toda lattice and its application to the theory of interacting optical solitons”, JOSA A, 15A:5 (1998), 1450–1458 | DOI | MR
[5] J.M. Arnold, “Stability of solitary wave trains in Hamiltonian wave systems”, Phys. Rev. E, 60:1 (1999), 979–986 | DOI | MR
[6] R. Carretero-Gonzales, V.S. Gerdjikov, M.D. Todorov, “$N$-soliton interactions: Effects of linear and nonlinear gain/loss”, AIP CP, 1895 (2017), 040001
[7] R. Carretero-Gonzalez, K. Promislow, “Localized breathing oscillations of Bose-Einstein condensates in periodic traps”, Phys. Rev. A, 66 (2002), 033610 | DOI
[8] E.V. Doktorov, V.S. Shchesnovich, “Modified nonlinear Schrödinger equation: Spectral transform and N-soliton solution”, J. Math. Phys., 36 (1995), 7009 | DOI | MR | Zbl
[9] H. Flaschka, “The Toda lattice. II. Existence of integrals”, Phys. Rev. B, 9 (1924) | MR
[10] V.S. Gerdjikov, “$N $-Soliton interactions, the Complex Toda chain and stability of NLS soliton trains”, Proceedings of the International Symposium on Electromagnetic Theory (Aristotle University of Thessaloniki, Greece, 1998), v. 1, ed. E. Kriezis, 307–309
[11] V.S. Gerdjikov, “Complex Toda chain – an integrable universal model for adiabatic $N $-soliton interactions”, Nonlinear Physics: Theory and Experiment, v. II, eds. M. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Scientific, 2003 | MR
[12] V.S. Gerdjikov, “Modeling soliton interactions of the perturbed vector nonlinear Schrödinger equation”, Bulgarian J. Phys., 38 (2011), 274–283
[13] V.S. Gerdjikov, B.B. Baizakov, M. Salerno, “Modelling adiabatic $N$-soliton interactions and perturbations”, Theor. Math. Phys., 144:2 (2005), 1138–1146 | DOI | MR | Zbl
[14] V.S. Gerdjikov, E.V. Doktorov, N.P. Matsuka, “$N$-soliton train and generalized Complex Toda chain for Manakov system”, Theor. Math. Phys., 151:3 (2007), 762–773 | DOI | MR | Zbl
[15] V.S. Gerdjikov, E.V. Doktorov, J. Yang, “Adiabatic interaction of $N$ ultrashort solitons: Universality of the Complex Toda chain model”, Phys. Rev. E, 64 (2001), 056617 | DOI | MR
[16] V.S. Gerdjikov, E.G. Evstatiev, D.J. Kaup, G.L. Diankov, I.M. Uzunov, “Stability and quasi-equidistant propagation of NLS soliton trains”, Phys. Lett. A, 241 (1998), 323–328 | DOI | MR | Zbl
[17] V.S. Gerdjikov, D.J. Kaup, I.M. Uzunov, E.G. Evstatiev, “Asymptotic behavior of $N$-soliton trains of the Nonlinear Schrödinger equation”, Phys. Rev. Lett., 77 (1996), 3943–3946 | DOI
[18] V.S. Gerdjikov, N.A. Kostov, E.V. Doktorov, N.P. Matsuka, “Generalized Perturbed Complex Toda chain for Manakov system and exact solutions of the Bose-Einstein mixtures”, Mathematics and Computers in Simulation, 80 (2009), 112–119 | DOI | MR | Zbl
[19] V.S. Gerdjikov, A.V. Kyuldjiev, M.D. Todorov, “Manakov solitons and effects of external potential wells”, DCDS Supplement, 2015, 2015, 505–514 | MR | Zbl
[20] V.S. Gerdjikov, M.D. Todorov, “On the effects of sech-like potentials on Manakov solitons”, AIP Conference Proceedings, 1561, 2013, 75–83 | DOI
[21] V.S. Gerdjikov, M.D. Todorov, A.V. Kyuldjiev, “Polarization effects in modeling soliton interactions of the Manakov model”, AIP Conference Proceedings, 1684, 2015, 080006 | DOI
[22] V.S. Gerdjikov, M.D. Todorov, A.V. Kyuldjiev, “Adiabatic interactions of Manakov soliton – effects of cross-modulation”, Mathematical modeling and physical dynamics of solitary waves: From continuum mechanics to field theory, Wave Motion, 71, eds. I.C. Christov, M.D. Todorov, S. Yoshida, 2017, 71–81 | DOI | MR | Zbl
[23] V.S. Gerdjikov, I.M. Uzunov, “Adiabatic and non-adiabatic soliton interactions in nonlinear optics”, Physica D, 152–153 (2001), 355–362 | DOI | MR | Zbl
[24] V.S. Gerdjikov, I.M. Uzunov, E.G. Evstatiev, G.L. Diankov, “Nonlinear Schrödinger equation and $N $-soliton interactions: Generalized Karpman-Solov'ev approach and the Complex Toda chain”, Phys. Rev. E, 55:5 (1997), 6039–6060 | DOI | MR
[25] V.I. Karpman, “Soliton evolution in the presence of perturbation”, Physica Scripta, 20 (1979), 462–478 | DOI | MR | Zbl
[26] V.I. Karpman, V.V. Solov'ev, “A perturbational approach to the two-soliton systems”, Physica D, 3:3 (1981), 487–502 | DOI | MR | Zbl
[27] Yu.S. Kivshar, B.A. Malomed, “Dynamics of solitons in nearly integrable systems”, Rev. Mod. Phys., 61:4 (1989), 763–915 | DOI
[28] S.V. Manakov, “On the theory of Two-dimensional stationary self-focusing electromagnetic waves”, Sov. Phys. JETP, 38 (1974), 248–253
[29] S.V. Manakov, “On the complete integrability and stochastization in discrete dynamical systems”, Sov. Phys. JETP, 40 (1974), 269–274 | MR
[30] M. Midrio, S. Wabnitz, P. Franco, “Perturbation theory for coupled nonlinear Schrödinger equations”, Phys. Rev. E, 54 (1996), 5743 | DOI
[31] J. Moser, Dynamical Systems, Theory and Applications, Lecture Notes in Physics, 38, Springer Verlag, 1975 | DOI | MR | Zbl
[32] V.S. Shchesnovich, E.V. Doktorov, “Perturbation theory for the modified nonlinear Schrtsdinger solitons”, Physica D, 129 (1999), 115 | DOI | MR | Zbl
[33] M.D. Todorov, V.S. Gerdjikov, A.V. Kyuldjiev, “Multi-soliton interactions for the Manakov system under composite external potentials”, Proc. Estonian Academy of Sciences. Phys.-Math. Series, 64:3 (2015), 368–378 | DOI | Zbl
[34] I.M. Uzunov, M. Gölles, F. Lederer, “Stabilization of soliton trains in optical fibers in the presence of third-order dispersion”, JOSA B, 12:6 (1995), 1164 | DOI
[35] V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method, Plenum, N.Y.; Consultants Bureau, 1984 | MR | Zbl
[36] V.E. Zakharov, A.B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Zh. Eksp. Teor. Fiz., 61 (1971), 118–134 | MR