Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_6_a1, author = {Evgeny I. Borzenko and Efim I. Hegaj}, title = {Three-dimensional simulation of a tank filling with a viscous fluid using the {VOF} method}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {670--677}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a1/} }
TY - JOUR AU - Evgeny I. Borzenko AU - Efim I. Hegaj TI - Three-dimensional simulation of a tank filling with a viscous fluid using the VOF method JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 670 EP - 677 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a1/ LA - en ID - JSFU_2020_13_6_a1 ER -
%0 Journal Article %A Evgeny I. Borzenko %A Efim I. Hegaj %T Three-dimensional simulation of a tank filling with a viscous fluid using the VOF method %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 670-677 %V 13 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a1/ %G en %F JSFU_2020_13_6_a1
Evgeny I. Borzenko; Efim I. Hegaj. Three-dimensional simulation of a tank filling with a viscous fluid using the VOF method. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 670-677. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a1/
[1] I.A. Glushkov et al., Simulation of the molding of articles from free-molding compositions, Arkhitektura-S, M., 2007 (in Russian)
[2] N.D. Katopodes, Free-Surface Flow: Computational Methods, Butterworth-Heinemann, 2019
[3] B.D. Nichols, C.W. Hirt, R.S. Hotchkiss, SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries, Los Alamos Scientific Laboratory Report, LA-8355, 1980
[4] W. Jang, J. Jilesen, F.S. Lien, N. Ji, “A study on the extension of a VOF/PLIC based method to a curvilinear co-ordinate system”, International Journal of Computational Fluid Dynamics, 22:4 (2008), 241–257 | DOI | MR | Zbl
[5] A. Issakhov, Y. Zhandaulet, A. Nogaeva, “Numerical simulation of dam break flow for various forms of the obstacle by VOF method”, International Journal of Multiphase Flow, 109 (2018), 191–206 | DOI | MR
[6] D.M. Hargreaves, H.P. Morvan, N.G. Wright, “Validation of the Volume of Fluid Method for Free Surface Calculation: The Broad-Crested Weir”, Engineering Applications of Computational Fluid Mechanics, 1:2 (2007), 136–146 | DOI
[7] S. Hansch, D. Lucas, T. Hohne, E. Krepper, Gu. Montoya, “Comparative Simulations of Free Surface Flows Using VOF-Methods and a New Approach for Multi-Scale Interfacial Structures”, Proceedings of the ASME Fluids Engineering Summer Meeting, 2013, FEDSM2013-16104 | DOI
[8] S. Saincher, J. Banerjee, “A Redistribution-Based Volume Preserving PLIC-VOF Technique”, Numerical Heat Transfer, 67 (2015), 338–362 | DOI
[9] X. Yin, I. Zaricos, N.K. Karadimitriou, A. Raoof, S.M. Hassanizadeh, “Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method”, Chemical Engineering Science, 195 (2018), 820–827 | DOI
[10] M. Karimi, H. Droghetti, D.L. Marchisio, “Multiscale Modeling of Expanding Polyurethane Foams via Computational Fluid Dynamics and Population Balance Equation”, Macromol. Symp., 360 (2016), 108–122 | DOI
[11] L.G. Loytsyansky, Fluid and Gas Mechanics, Gostekhizdat, M.–L., 1950
[12] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, 1980 | Zbl
[13] G.R. Shrager, A.N. Kozlobrodov, V.A. Yakutenok, Modeling of hydrodynamic processes in polymer processing technology, TGU Publ., Tomsk, 1999