On a creeping 3D convective motion of fluids with an isothermal interface
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 661-669.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work the 3D two-layer motion of liquids, the velocity field of which has a special form, is considered. The arising conjugate initial boundary value problem for the Oberbek–Boussinesq model is reduced to a system of ten integrodifferential equations with full conditions on a flat interface. It is shown that for small Marangoni numbers the stationary problem can have up to two solutions. The case when the stationary flow arises due to a change in the internal interphase energy is analyzed separately.
Keywords: interphase energy, creeping flow, inverse problem.
Mots-clés : Oberbek-Boussinesq model
@article{JSFU_2020_13_6_a0,
     author = {Viktor K. Andreev},
     title = {On a creeping {3D} convective motion of fluids with an isothermal interface},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {661--669},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a0/}
}
TY  - JOUR
AU  - Viktor K. Andreev
TI  - On a creeping 3D convective motion of fluids with an isothermal interface
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 661
EP  - 669
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a0/
LA  - en
ID  - JSFU_2020_13_6_a0
ER  - 
%0 Journal Article
%A Viktor K. Andreev
%T On a creeping 3D convective motion of fluids with an isothermal interface
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 661-669
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a0/
%G en
%F JSFU_2020_13_6_a0
Viktor K. Andreev. On a creeping 3D convective motion of fluids with an isothermal interface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 661-669. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a0/

[1] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical Models of Convection, De Gruyter, Berlin–Boston, 2020 | MR | Zbl

[2] N. Aristov, D.V. Knyazev, A.D. Polyanin, “Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables”, Theoretical Foundations of Chemical Engineering, 43:5 (2009), 642–662 | DOI

[3] V.K. Andreev, V.E. Zahvataev, E.A. Ryabitskii, Thermocapillary Instability, Nauka, Siberian brunch, Novosibirsk, 2000 (in Russian) | MR