On a creeping 3D convective motion of fluids with an isothermal interface
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 661-669
Cet article a éte moissonné depuis la source Math-Net.Ru
In the work the 3D two-layer motion of liquids, the velocity field of which has a special form, is considered. The arising conjugate initial boundary value problem for the Oberbek–Boussinesq model is reduced to a system of ten integrodifferential equations with full conditions on a flat interface. It is shown that for small Marangoni numbers the stationary problem can have up to two solutions. The case when the stationary flow arises due to a change in the internal interphase energy is analyzed separately.
Keywords:
interphase energy, creeping flow, inverse problem.
Mots-clés : Oberbek-Boussinesq model
Mots-clés : Oberbek-Boussinesq model
@article{JSFU_2020_13_6_a0,
author = {Viktor K. Andreev},
title = {On a creeping {3D} convective motion of fluids with an isothermal interface},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {661--669},
year = {2020},
volume = {13},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a0/}
}
TY - JOUR AU - Viktor K. Andreev TI - On a creeping 3D convective motion of fluids with an isothermal interface JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 661 EP - 669 VL - 13 IS - 6 UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a0/ LA - en ID - JSFU_2020_13_6_a0 ER -
Viktor K. Andreev. On a creeping 3D convective motion of fluids with an isothermal interface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 661-669. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a0/
[1] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical Models of Convection, De Gruyter, Berlin–Boston, 2020 | MR | Zbl
[2] N. Aristov, D.V. Knyazev, A.D. Polyanin, “Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables”, Theoretical Foundations of Chemical Engineering, 43:5 (2009), 642–662 | DOI
[3] V.K. Andreev, V.E. Zahvataev, E.A. Ryabitskii, Thermocapillary Instability, Nauka, Siberian brunch, Novosibirsk, 2000 (in Russian) | MR