Layered motion of two immiscible liquids with a free boundary
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 574-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unidirectional motion of two viscous immiscible incompressible liquids in a flat channel is studied. An unsteady temperature gradient is set on the bottom solid wall, and the upper wall is a free boundary. Liquids contact on a flat interface. The motion is caused by the combined action of thermogravitational and thermocapillary forces and a given total unsteady flow rate in the layers. The corresponding initial boundary value problem is conjugate and inverse, since the pressure gradient along the channel is determined together with the velocity and temperature field. An exact stationary solution was found for it. In Laplace images, the solution of the non-stationary problem is found in the quadrature forms. It was established that if the temperature on the bottom wall and the flow rate stabilize with time, then the motion goes to a stationary state with time. This fact indicates the stability of the stationary solution with respect to unidirectional unsteady perturbations. The calculation results showing various methods of controlling motion by setting the temperature on the wall are given.
Keywords: thermocapillary
Mots-clés : interface, Oberbek–Boussinesq equations.
@article{JSFU_2020_13_5_a5,
     author = {Elena N. Lemeshkova},
     title = {Layered motion of two immiscible liquids with a free boundary},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {574--582},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a5/}
}
TY  - JOUR
AU  - Elena N. Lemeshkova
TI  - Layered motion of two immiscible liquids with a free boundary
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 574
EP  - 582
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a5/
LA  - en
ID  - JSFU_2020_13_5_a5
ER  - 
%0 Journal Article
%A Elena N. Lemeshkova
%T Layered motion of two immiscible liquids with a free boundary
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 574-582
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a5/
%G en
%F JSFU_2020_13_5_a5
Elena N. Lemeshkova. Layered motion of two immiscible liquids with a free boundary. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 574-582. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a5/

[1] M.K. Smith, S.H. Davis, “Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface wave instabillities”, J. Fluid Mech., 132:7 (1983), 145–162 | DOI | Zbl

[2] A.A. Vedenov, G.G. Gladush, Physical processes during laser processing of metals, Nauka, M., 1985 (in Russian)

[3] E.A. Ryabitskii, “Thermocapillarity instability of liquid layer with internal heat generation”, Microgravity Science and Technology, 7:1 (1994), 20–23 | MR

[4] H.J. Palmer, J.C. Berg, “Hydrodynamic stability of surfactant solutions heated from below”, J. Fluid Mech., 51:2 (1972), 385–402 | DOI | Zbl

[5] R. Kh. Zeytovnian, Convection in Fluids, Springer, Dordrecht, 2009 | MR

[6] R.V. Birikh, “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 5 (1966), 69–72

[7] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical Models of Convection, Walter de Gruyter GmbH and CO KG, Berlin–Boston, 2012 | MR

[8] V.V. Pukhnachov, “Non-stationary Analogues of the Birikh Solution”, Nauchnyi zhurnal teoreticheskih i prikladnyh issledovanii. Novosti Altaiskogo Gos. Universiteta, 69:1–2 (2011), 62–69 (in Russian)

[9] V.K. Andreev, Birikh solution of convection equations and some their generalizations, ICM SB RAS, Krasnoyarsk, 2010 (in Russian)

[10] V.K. Andreev, E.N. Lemeshkova, Linear problems of motions with interfaces, Sib. Feder. Univ., Krasnoyarsk, 2018 (in Russian)

[11] R. Kh. Zeytounian, “The Benard-Marangoni thermocapillary-instability problem”, Phys. Usp., 41 (1998), 241–267 | DOI | MR