Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_5_a4, author = {Nurlan S. Imanbaev}, title = {On a problem that does not have basis property of root vectors, associated with a perturbed regular operator of multiple differentiation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {568--573}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a4/} }
TY - JOUR AU - Nurlan S. Imanbaev TI - On a problem that does not have basis property of root vectors, associated with a perturbed regular operator of multiple differentiation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 568 EP - 573 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a4/ LA - en ID - JSFU_2020_13_5_a4 ER -
%0 Journal Article %A Nurlan S. Imanbaev %T On a problem that does not have basis property of root vectors, associated with a perturbed regular operator of multiple differentiation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 568-573 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a4/ %G en %F JSFU_2020_13_5_a4
Nurlan S. Imanbaev. On a problem that does not have basis property of root vectors, associated with a perturbed regular operator of multiple differentiation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 568-573. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a4/
[1] A.S. Makin, Differential Equations, 42:4 (2006), 599–602 | DOI | MR | Zbl
[2] A.S. Markus, “On decomposition of a weakly perturbedself-adjoint operator by root vectors”, Reports of the AS USSR, 142:3 (1962), 538–541 (in Russian) | MR | Zbl
[3] N.B. Kerimov, Kh.R. Mamedov, “On the Riesz basis property of root functions of some regular boundary value problems”, Math. Notes, 64 (1998), 483–487 | DOI | MR | Zbl
[4] A.A. Shkalikov, “On basis property of eigenfunctions of ordinary differential operators with integral boundary value conditions”, Vestnik MGU, 1982, no. 6, 12–21 (in Russian) | MR | Zbl
[5] V.A. Ilyin, L.V. Kritskov, Journal of Mathematical Sciences, 116 (2003), 3489–3550 | DOI
[6] N.S. Imanbaev, M.A. Sadybekov, “Basis properties of root functions of loaded differential operators of the second order”, Reports of the NAS RK, 2010, no. 2, 11–13 (in Russian)
[7] N.S. Imanbaev, M.A. Sadybekov, “Stability of basis property of a type of problems with nonlocal perturbation of boundary conditions”, ICAAM 2016, AIP Conf. Proc., 1759, 020034–020039
[8] N.S. Imanbaev, International Journal of Differential Equations, 2015 (2015), 641481 | DOI | MR | Zbl
[9] N.S. Imanbaev, M.A. Sadybekov, “On instability of basis property of root vectors system of the double differentiation operator with an integral perturbation of periodic type conditions”, AIP Publishing: Advancements in Mathematical Sciences, 1676 (2015), 020083–020088 | MR
[10] M.A. Sadybekov, N.S. Imanbaev, Differential Equations, 48:6 (2012), 896–900 | DOI | MR | Zbl
[11] M.A. Sadybekov, N.S. Imanbaev, “On spectral properties of a periodic problem with an integral perturbation of the boundary condition”, Eurasian Mathematical Journal, 4:3 (2013), 53–62 | MR | Zbl
[12] N.S. Imanbaev, “Stability of the basis property of eigenvalue systems of Sturm-Liouville operators with integral boundary condition”, ElectronicJournal of Differential Equations, 2016:87 (2016), 1–8 | MR
[13] M.A. Sadybekov, N.S. Imanbaev, “Regular differential operator with a perturbed boundary condition”, Mathematical Notes, 101:5 (2017), 878–887 | DOI | MR | Zbl
[14] P. Lang, J. Locker, “Spectral theory of two-point differential operators determined by -D2”, Journal Math. Anal.Appl., 146:1 (1990), 148–191 | DOI | MR | Zbl
[15] M.A. Naimark, Linear Differential Operators, George G. Harrap $\$ Company, London, 1967 | MR
[16] A. Yu. Mokin, Differential equations, 45:1 (2009), 123–137 | DOI | MR | Zbl
[17] M.A. Sadybekov, N.S. Imanbaev, “Characteristic determinant of a boundary value problem, which does not have the basis property”, Eurasian Math. J., 8:2 (2017), 40–46 | MR | Zbl