Relationship between the Bergman and Cauchy-Szeg\"{o} in the domains $\tau ^{+}(n-1)$ и $\Re _{IV}^{n}$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 559-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a connection has been established between the Bergman and Cauchy-Szegö kernels using the biholomorphic equivalence of the domains $\tau ^{+} \left(n-1\right)$ and the Lie ball $\Re _{IV}^{n} $. Moreover, integral representations of holomorphic functions in these domains are obtained.
Keywords: classical domains, Lie ball, future tube, Shilov's boundary, Bergman's kernel, Cauchy-Szegö's kernel
Mots-clés : Jacobian, Poisson's kernel.
@article{JSFU_2020_13_5_a3,
     author = {Gulmirza Kh. Khudayberganov and Jonibek Sh. Abdullayev},
     title = {Relationship between the {Bergman} and {Cauchy-Szeg\"{o}} in the domains  $\tau ^{+}(n-1)$ {\cyri} $\Re _{IV}^{n}$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {559--567},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a3/}
}
TY  - JOUR
AU  - Gulmirza Kh. Khudayberganov
AU  - Jonibek Sh. Abdullayev
TI  - Relationship between the Bergman and Cauchy-Szeg\"{o} in the domains  $\tau ^{+}(n-1)$ и $\Re _{IV}^{n}$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 559
EP  - 567
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a3/
LA  - en
ID  - JSFU_2020_13_5_a3
ER  - 
%0 Journal Article
%A Gulmirza Kh. Khudayberganov
%A Jonibek Sh. Abdullayev
%T Relationship between the Bergman and Cauchy-Szeg\"{o} in the domains  $\tau ^{+}(n-1)$ и $\Re _{IV}^{n}$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 559-567
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a3/
%G en
%F JSFU_2020_13_5_a3
Gulmirza Kh. Khudayberganov; Jonibek Sh. Abdullayev. Relationship between the Bergman and Cauchy-Szeg\"{o} in the domains  $\tau ^{+}(n-1)$ и $\Re _{IV}^{n}$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 559-567. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a3/

[1] B.V. Shabat, Introduction to Complex Analysis Part II Functions of Several Variables, Nauka, Fiz. Mat. Lit., M., 1985 (in Russian) | MR

[2] L.A. Aizenberg, A.P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Transl. Math. Monogr., 58, Am. Math. Soc., Providence, 1983 | DOI | MR | Zbl

[3] L.A. Aizenberg, Carleman Formulas in complex analysis, Nauka, Novosibirsk, 1990 (in Russian) | MR | Zbl

[4] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Analysis in matrix domains, Monograph., Siberian Federal University, Krasnoyarsk, 2017 (in Russian)

[5] L.K. Hua, Harmonic analysis of functions of several complex variables, in classical domains, IL, M., 1963 (in Russian) | MR

[6] G. Khudayberganov, B. Kurbanov, “Analysis in matrix domains”, Uzbek Mathematical Journal, 2012, no. 3, 159–166

[7] G. Khudayberganov, B.P. Otemuratov, U.S. Rakhmonov, “Boundary Morera theorem for the matrix ball of the third type”, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:1 (2018), 40–45 | DOI | MR

[8] G. Khudayberganov, U.S. Rakhmonov, Z.Q. Matyakubov, “Integral formulas for some matrix domains”, Contemporary Mathematics, 662, AMS, 2016, 89–95 | DOI | MR | Zbl

[9] G. Khudayberganov, U.S. Rakhmonov, “The Bergman and Cauchy-Szegő kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7:3 (2014), 305–310 | MR

[10] G. Khudayberganov, U.S. Rakhmonov, “Carleman Formula for Matrix Ball of the Third Type”, Algebra, Complex Analysis, and Pluripotential Theory, USUZCAMP 2017, Springer Proceedings in Mathematics Statistics, 264, Springer, Cham, 2017, 101–108 | DOI | MR

[11] S.G. Myslivets, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:6 (2018), 792–795 | DOI

[12] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^{n}$, Springer-Verlag, New York–Berlin–Heidelberg, 1980 | MR

[13] S.G. Myslivets, Russ Math., 63 (2019), 35–41 | DOI | Zbl

[14] U.S. Rakhmonov, J. Sh.Abdullayev, “On volumes of matrix ball of third type and generalized Lie balls”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 29:4 (2019), 548–557

[15] G. Khudayberganov, A.M. Khalknazarov, J. Sh.Abdullayev, Russian Mathematics, 64:3 (2020), 66–71 | DOI | Zbl

[16] G. Khudaiberganov, B.B. Khidirov, U.S. Rakhmonov, “Automorphisms of matrix balls”, Acta NUUz, 2010, no. 3, 205–210

[17] V.S. Vladimirov, A.G. Sergeev, “Complex analysis in the future tube, Several complex variables. II: Function theory in classical domains”, Complex potential theory, Encycl. Math. Sci., 8, 1994, 179–253

[18] G. Khudayberganov, J. Sh.Abdullayev, “About one realization Lie ball”, Contemporary Mathematics. Fundamental Directions (to appear)

[19] É. Cartan, “Sur les domaines bornes homogenes de l 'espace de $n$ variables complexes”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 116–162 | DOI | MR

[20] C.L. Siegel, Automorphic functions of several complex variables, Inostrannaya Literatura, M., 1954 (in Russian) | MR

[21] I.I. Pjatecki\v{i}-Šapiro, Geometry of classical domains and the theory of automorphic functions, Fizmatgiz, M., 1961 (in Russian) | MR

[22] V.S. Vladimirov, Generalized Functions in Mathematical Physics, Translated from 2nd. Russian ed., Mir, M., 1979 | MR | Zbl

[23] A. Koranyi, “The Poisson integral for generalized half-planes and bounded symmetric domains”, Ann. Math., 82:2 (1965), 332–350 | DOI | MR | Zbl