On initial boundary value problem for parabolic differential operator with non-coercive boundary conditions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 547-558
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider initial boundary value problem for uniformly $2$-parabolic differential operator of second order in cylinder domain in ${\mathbb R}^n $ with non-coercive boundary conditions. In this case there is a loss of smoothness of the solution in Sobolev type spaces compared with the coercive situation. Using by Faedo–Galerkin method we prove that problem has unique solution in special Bochner space.
Keywords:
non-coercive problem, parabolic problem, Faedo–Galerkin method.
@article{JSFU_2020_13_5_a2,
author = {Alexander N. Polkovnikov},
title = {On initial boundary value problem for parabolic differential operator with non-coercive boundary conditions},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {547--558},
publisher = {mathdoc},
volume = {13},
number = {5},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a2/}
}
TY - JOUR AU - Alexander N. Polkovnikov TI - On initial boundary value problem for parabolic differential operator with non-coercive boundary conditions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 547 EP - 558 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a2/ LA - en ID - JSFU_2020_13_5_a2 ER -
%0 Journal Article %A Alexander N. Polkovnikov %T On initial boundary value problem for parabolic differential operator with non-coercive boundary conditions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 547-558 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a2/ %G en %F JSFU_2020_13_5_a2
Alexander N. Polkovnikov. On initial boundary value problem for parabolic differential operator with non-coercive boundary conditions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 547-558. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a2/