Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_5_a1, author = {Kamoliddin T. Karimov}, title = {Nonlocal problem for a three-dimensional elliptic equation with singular coefficients in a rectangular parallelepiped}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {533--546}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a1/} }
TY - JOUR AU - Kamoliddin T. Karimov TI - Nonlocal problem for a three-dimensional elliptic equation with singular coefficients in a rectangular parallelepiped JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 533 EP - 546 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a1/ LA - en ID - JSFU_2020_13_5_a1 ER -
%0 Journal Article %A Kamoliddin T. Karimov %T Nonlocal problem for a three-dimensional elliptic equation with singular coefficients in a rectangular parallelepiped %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 533-546 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a1/ %G en %F JSFU_2020_13_5_a1
Kamoliddin T. Karimov. Nonlocal problem for a three-dimensional elliptic equation with singular coefficients in a rectangular parallelepiped. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 533-546. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a1/
[1] A.A. Dezin, “Operators involving a first derivative with respect to time and nonlocal boundary conditions”, Math. USSR-Izv., 1:1 (1967), 57–79 | DOI | MR
[2] A.M. Nakhushev, Equations of Mathematical Biology, Visshaya shkola, M., 1995 (in Russian)
[3] A.A. Guetter, “A free boundary problem in plasma containment”, SIAM J. Appl. Math., 49 (1989), 99–115 | DOI | MR | Zbl
[4] C.V. Pao, “Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions”, Journal of Mathematical Analysis and Applications, 195:3 (1995), 702–718 | DOI | MR | Zbl
[5] E. Obolashvili, “Nonlocal problems for some partial differential equations”, Applicable Analysis, 45 (1992), 269–280 | DOI | MR | Zbl
[6] J.I. Diaz, J.M. Rakotoson, “On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry”, Archive for Rational Mechanics and Analysis, 134 (1996), 53–95 | DOI | MR | Zbl
[7] F.I. Frankl, “Flowing profiles by a stream of subsonic velocity with a supersonic zone ending with a direct surge of seal”, PMM, 20:2 (1956), 196–202 | MR | Zbl
[8] N.I. Ionkin, “Solving one regional problem of thermal conductivity theory with a non-classical edge condition”, Differ. equations, 13:2 (1977), 294–304 | MR | Zbl
[9] N.I. Ionkin, “On the sustainability of one problem theory of thermal conductivity with a non-classical edge condition”, Differ. equations, 15:7 (1979), 1279–1283 | MR | Zbl
[10] N.I. Ionkin, E.I. Moiseyev, “About the task for the equation of thermal conductivity with two-point edge conditions”, Differ. equations, 15:7 (1979), 1284–1295 | MR | Zbl
[11] M.E. Lerner, O.A. Repin, “On Frankl'-type problems for some elliptic equations with degeneration of various types”, Differ. equations, 35:8 (1999), 1098–1104 | MR | Zbl
[12] M.E. Lerner, O.A. Repin, “Nonlocal boundary value problems in a vertical half-strip for a generalized axisymmetric Helmholtz Equation”, Differ. equations, 37:11 (2001), 1562–1564 | DOI | MR | Zbl
[13] E.I. Moiseev, “On the solution of a nonlocal boundary value problem by the spectral method”, Differ. equations, 35:8 (1999), 1105–1112 | MR | Zbl
[14] E.I. Moiseev, “Solvability of a Nonlocal Boundary Value Problem”, Differ. equations, 37:11 (2001), 1643–1646 | DOI | MR | Zbl
[15] Yu.K. Sabitova, “Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation”, Russian Math. (Iz. VUZ), 53:12 (2009), 41–49 | DOI | MR | Zbl
[16] A.A. Abashkin, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki (J. Samara State Tech. Univ., Ser. Phys. Math. Sci.), 36:3 (2014), 7–20 (in Russian) | DOI | Zbl
[17] A.M. Nakhushev, Offset problems for partial differential equations, Nauka, M., 2006 (in Russian) | MR
[18] Z.A. Nakhusheva, Nonlocal boundary value problems for basic and mixed types of differential equations, Nalchik, 2011 (in Russian)
[19] Z.A. Nakhusheva, Differ. equations, 45:8 (2009), 1199–2003 | DOI | MR
[20] K.B. Sabitov, V.A. Novikova, Russian Math. (Iz. VUZ), 60:6 (2016), 52–62 | DOI | MR | Zbl
[21] K.B. Sabitov, Differ. equations, 55:10 (2019), 1384–1389 | DOI | MR | Zbl
[22] A.N. Tikhonov, A.A. Samarskiy, Equations of mathematical physics, Nauka, M., 1972 (in Russian) | MR
[23] M.A. Naimark, Linear differential operators, Nauka, M., 1969 (in Russian) | MR | Zbl
[24] G.N. Watson, Theory of Bessel functions, v. 1, Izd. IL, M., 1949 (in Russian)
[25] M.B. Kapilevich, “On one equation of mixed elliptic-hyperbolic type”, Matematicheskii Sbornik, 30(72) (1952), 11–38 | MR | Zbl
[26] N.N. Lebedev, Special functions and their applications, Fizmatlit, M., 1963 (in Russian) | MR
[27] G.P. Tolstov, Fourier series, Nauka, M., 1980 (in Russian) | MR | Zbl