Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_5_a0, author = {Ihsane Malass and Nikolai Tarkhanov}, title = {A perturbation of the de {Rham} complex}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {519--532}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a0/} }
TY - JOUR AU - Ihsane Malass AU - Nikolai Tarkhanov TI - A perturbation of the de Rham complex JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 519 EP - 532 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a0/ LA - en ID - JSFU_2020_13_5_a0 ER -
Ihsane Malass; Nikolai Tarkhanov. A perturbation of the de Rham complex. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 519-532. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a0/
[1] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Pt. I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl
[2] C.-G. Ambrozie, F.-H. Vasilescu, Banach Space Complexes, Mathematics and its Applications, 334, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl
[3] L. Boutet de Monvel, “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl
[4] L.Hörmander, “$L^2$ estimates and existence theorems for the $\overline{\partial}$ operator”, Acta Math., 113:1–2 (1965), 89–152 | DOI | MR
[5] I. Malass, N. Tarkhanov, J. Siber. Fed. Univ., Math. and Phys., 12:4 (2019), 455–465 | DOI | MR
[6] S.P. Novikov, “On Metric-Independent Exotic Homology”, Proc. Steklov Inst. Math., 251 (2005), 206–212 | MR | Zbl
[7] M. Putinar, “Some invariants for semi- Fredholm systems of essentially commuting operators”, J. Operator Theory, 8 (1982), 65–90 | MR | Zbl
[8] D.B. Ray, I.M. Singer, “Reidemeister torsion and the Laplacian on Riemannian manifolds”, Adv. in Math., 7 (1971), 145–210 | DOI | MR | Zbl
[9] D.C. Spencer, “Harmonic integrals and Neumann problems associated with linear partial differential equations”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations, Novosibirsk, 1963, 253–260 | MR
[10] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl
[11] N. Tarkhanov, “Euler characteristic of Fredholm quasicomplexes”, Funct. Anal. and its Appl., 41 (2007), 318–322 | DOI | MR | Zbl
[12] K. Krupchyk, N. Tarkhanov, J. Tuomela, “Elliptic quasicomplexes in Boutet de Monvel algebra”, J. of Funct. Anal., 247 (2007), 202–230 | DOI | MR | Zbl
[13] D. Wallenta, “A Lefschetz fixed point formula for elliptic quasicomplexes”, Integr. Equ. Oper. Theory, 78:4 (2014), 577–587 | DOI | MR | Zbl
[14] R.O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980 | MR | Zbl
[15] E. Witten, “Supersymmetry and Morse theory”, J. Diff. Geom., 17 (1982), 661–692 | DOI | MR | Zbl