$L^p$ regularity of the solution of the heat equation with discontinuous coefficients
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 466-479.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the transmission problem for the heat equation on a bounded plane sector in $L^{p}$-Sobolev spaces. By Applying the theory of the sums of operators of Da Prato-Grisvard and Dore-Venni, we prove that the solution can be splited into a regular part in $L^{p}$-Sobolev space and an explicit singular part.
Keywords: transmission heat equation, sums of linear operators, singular behavior, non-smooth domains.
@article{JSFU_2020_13_4_a8,
     author = {Selma Kouicem and Wided Chikouche},
     title = {$L^p$ regularity of the solution of the heat equation with discontinuous coefficients},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {466--479},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/}
}
TY  - JOUR
AU  - Selma Kouicem
AU  - Wided Chikouche
TI  - $L^p$ regularity of the solution of the heat equation with discontinuous coefficients
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 466
EP  - 479
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/
LA  - en
ID  - JSFU_2020_13_4_a8
ER  - 
%0 Journal Article
%A Selma Kouicem
%A Wided Chikouche
%T $L^p$ regularity of the solution of the heat equation with discontinuous coefficients
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 466-479
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/
%G en
%F JSFU_2020_13_4_a8
Selma Kouicem; Wided Chikouche. $L^p$ regularity of the solution of the heat equation with discontinuous coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 466-479. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/

[1] A. Aibeche, W. Chikouche, S. Nicaise, “$L^{p}$ Regularity of transmission problems in dihedral domains”, Bollettino U. M. I., 10-B:3 (2007), 633–660

[2] G. Da Prato, P. Grisvard, “Sommes d'opérateurs linéaires et équations différentielles opérationnelles”, J. Math. Pures Appl. IX Ser., 54 (1975), 305–387

[3] C. De Coster, S. Nicaise, “Singular behavior of the solution of the Helmholtz equation in weighted $L^{p}$-Sobolev spaces”, Adv. Differential Equations, 16 (2011), 165–198

[4] C. De Coster, S. Nicaise, “Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted $L^{p}$-Sobolev spaces”, Adv. Differential Equations, 16 (2011), 221–256

[5] C. De Coster, S. Nicaise, “Singular behavior of the solution of the Cauchy-Dirichlet heat equation in weighted $L^{p}$-Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 769–780

[6] G. Dore, A. Venni, “On the closedness of the sum of two closed operators”, Mathematische Zeitschrift, 196 (1987), 189–201

[7] A. Favini, R. Labbas, K. Lemrabet, S. Maingot, “Study of the limit of transmission problems in a thin layer by the sum theory of linear operators”, Rev. Mat. Complut., 18 (2005), 143–176

[8] P. Grisvard, “Edge behaviour of the solution of an elliptic problem”, Math. Nachr., 132 (1987), 281–299

[9] P. Grisvard, “Singular behaviour of elliptic problems in non Hilbertian Sobolev spaces”, J. Math. Pures Appl., 74 (1995), 3–33

[10] J.R. Kweon, “Edge singular behavior for the heat equation on polyhedral cylinders in $\mathbb R^3$”, Potential Anal., 38 (2013), 589–610

[11] R. Labbas, M. Moussaoui, M. Najmi, “Singular behaviour of the Dirichlet problem in H$\ddot{o}$lder spaces of the solutions to the Dirichlet problem in a cone”, Rend. Ist. Mat. Univ. Trieste, 30 (1998), 155–179

[12] R. Labbas, M. Moussaoui, “On the resolution of the heat equation with discontinuous coefficients”, Semigroup Forum, 60 (2000), 187–201

[13] S. Nicaise, Polygonal interface problems, Peter Lang, Berlin, 1993

[14] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Math. Sciences, 44, Springer-Verlag, New York, 1983