Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_4_a8, author = {Selma Kouicem and Wided Chikouche}, title = {$L^p$ regularity of the solution of the heat equation with discontinuous coefficients}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {466--479}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/} }
TY - JOUR AU - Selma Kouicem AU - Wided Chikouche TI - $L^p$ regularity of the solution of the heat equation with discontinuous coefficients JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 466 EP - 479 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/ LA - en ID - JSFU_2020_13_4_a8 ER -
%0 Journal Article %A Selma Kouicem %A Wided Chikouche %T $L^p$ regularity of the solution of the heat equation with discontinuous coefficients %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 466-479 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/ %G en %F JSFU_2020_13_4_a8
Selma Kouicem; Wided Chikouche. $L^p$ regularity of the solution of the heat equation with discontinuous coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 466-479. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/
[1] A. Aibeche, W. Chikouche, S. Nicaise, “$L^{p}$ Regularity of transmission problems in dihedral domains”, Bollettino U. M. I., 10-B:3 (2007), 633–660
[2] G. Da Prato, P. Grisvard, “Sommes d'opérateurs linéaires et équations différentielles opérationnelles”, J. Math. Pures Appl. IX Ser., 54 (1975), 305–387
[3] C. De Coster, S. Nicaise, “Singular behavior of the solution of the Helmholtz equation in weighted $L^{p}$-Sobolev spaces”, Adv. Differential Equations, 16 (2011), 165–198
[4] C. De Coster, S. Nicaise, “Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted $L^{p}$-Sobolev spaces”, Adv. Differential Equations, 16 (2011), 221–256
[5] C. De Coster, S. Nicaise, “Singular behavior of the solution of the Cauchy-Dirichlet heat equation in weighted $L^{p}$-Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 769–780
[6] G. Dore, A. Venni, “On the closedness of the sum of two closed operators”, Mathematische Zeitschrift, 196 (1987), 189–201
[7] A. Favini, R. Labbas, K. Lemrabet, S. Maingot, “Study of the limit of transmission problems in a thin layer by the sum theory of linear operators”, Rev. Mat. Complut., 18 (2005), 143–176
[8] P. Grisvard, “Edge behaviour of the solution of an elliptic problem”, Math. Nachr., 132 (1987), 281–299
[9] P. Grisvard, “Singular behaviour of elliptic problems in non Hilbertian Sobolev spaces”, J. Math. Pures Appl., 74 (1995), 3–33
[10] J.R. Kweon, “Edge singular behavior for the heat equation on polyhedral cylinders in $\mathbb R^3$”, Potential Anal., 38 (2013), 589–610
[11] R. Labbas, M. Moussaoui, M. Najmi, “Singular behaviour of the Dirichlet problem in H$\ddot{o}$lder spaces of the solutions to the Dirichlet problem in a cone”, Rend. Ist. Mat. Univ. Trieste, 30 (1998), 155–179
[12] R. Labbas, M. Moussaoui, “On the resolution of the heat equation with discontinuous coefficients”, Semigroup Forum, 60 (2000), 187–201
[13] S. Nicaise, Polygonal interface problems, Peter Lang, Berlin, 1993
[14] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Math. Sciences, 44, Springer-Verlag, New York, 1983