$L^p$ regularity of the solution of the heat equation with discontinuous coefficients
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 466-479

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the transmission problem for the heat equation on a bounded plane sector in $L^{p}$-Sobolev spaces. By Applying the theory of the sums of operators of Da Prato-Grisvard and Dore-Venni, we prove that the solution can be splited into a regular part in $L^{p}$-Sobolev space and an explicit singular part.
Keywords: transmission heat equation, sums of linear operators, singular behavior, non-smooth domains.
@article{JSFU_2020_13_4_a8,
     author = {Selma Kouicem and Wided Chikouche},
     title = {$L^p$ regularity of the solution of the heat equation with discontinuous coefficients},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {466--479},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/}
}
TY  - JOUR
AU  - Selma Kouicem
AU  - Wided Chikouche
TI  - $L^p$ regularity of the solution of the heat equation with discontinuous coefficients
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 466
EP  - 479
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/
LA  - en
ID  - JSFU_2020_13_4_a8
ER  - 
%0 Journal Article
%A Selma Kouicem
%A Wided Chikouche
%T $L^p$ regularity of the solution of the heat equation with discontinuous coefficients
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 466-479
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/
%G en
%F JSFU_2020_13_4_a8
Selma Kouicem; Wided Chikouche. $L^p$ regularity of the solution of the heat equation with discontinuous coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 466-479. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a8/