On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 503-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide new sharp decomposition theorems for multifunctional Bergman spaces in the unit ball and bounded pseudoconvex domains with smooth boundary expanding known results from the unit ball. Namely we prove that $ \prod \limits_{j=1}^{m}||f_{j}|| _{X_{j}} \asymp ||f_{1} \dots f_{m}||_{A_{\alpha}^{p}}$ for various $(X_{j})$ spaces of analytic functions in bounded pseudoconvex domains with smooth boundary where $f, f_{j}, j=1,\dots, m$ are analytic functions and where $A_{\alpha}^{p}, 0 $ is a Bergman space. This in particular also extend in various directions a known theorem on atomic decomposition of Bergman $A^{p}_{\alpha}$ spaces.
Keywords: unit ball, Bergman spaces, decomposition theorems, Hardy type spaces.
Mots-clés : pseudoconvex domains
@article{JSFU_2020_13_4_a11,
     author = {Romi F. Shamoyan and Elena B. Tomashevskaya},
     title = {On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {503--514},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a11/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
AU  - Elena B. Tomashevskaya
TI  - On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 503
EP  - 514
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a11/
LA  - en
ID  - JSFU_2020_13_4_a11
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%A Elena B. Tomashevskaya
%T On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 503-514
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a11/
%G en
%F JSFU_2020_13_4_a11
Romi F. Shamoyan; Elena B. Tomashevskaya. On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 503-514. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a11/

[1] H. Triebel, Theory of function spaces, Birkhauser, Basel, 2006

[2] G. Dafni, “Hardy spaces on some pseudoconvex domains”, Geom. Anal., 9 (1994), 273–316

[3] J. Garnett, J. Latter, “The atomic decomposition of Hardy spaces of several complex variables”, Duke Math. Journ., 45 (1978), 815–845

[4] S. Grellier, M. Peloso, “Decomposition theorems for Hardy spaces on convex domains of finite type”, Illinois Journal of Mathematics, 46:1 (2002), 207–232

[5] S. Li, R. Shamoyan, Complex Var. Elliptic Equ., 54:12 (2009), 1151–1162 | DOI

[6] R.F. Shamoyan, M. Arsenovic, “On distance estimates and atomic decompositions”, Bull. Korean Math. Soc., 52:1 (2015), 85–103

[7] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005

[8] P. Ahern, R. Schneider, “Holomorphic Lipschits functions in pseudoconvex domains”, Amer. J. Math., 101:3 (1979), 543–565

[9] R. Coifman, R. Rochberg, “Representation theorems for holomorphic functions in $ L^{p}$”, Asterisque, 77, Soc. Math. France, Paris, 1980, 11–66

[10] Z. Chen, W. Quyang, Publicacions Matematiques, 52:2 (2013) | DOI

[11] J.M. Ortega, J. Fabregs, “Mixed-norm spaces and interpolations”, Studia Math., 109:3 (1994), 233–254

[12] F. Beatrous, “$L^{p}$-estimates for extensions of holomorphic functions”, Michigan Math. Jour., 32:3 (1985), 361–380

[13] M. Abate, J. Raissy, A. Saracco, “Toeplitz operators and Carleson measure in strongly pseudoconvex domains”, J. Func. Anal., 263:11 (2012), 3449–3491

[14] R. Shamoyan, S. Li, “On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball”, Bull. Sci. Math., 134:2 (2010), 144–154

[15] R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics, 108, Springer-Verlag, New York, 1986

[16] S-Y. Li, W. Luo, “Analysis on Besov spaces II. Embedding and duality theorems”, J. Math. Anal. Appl., 333:2 (2007), 1189–1202

[17] M. Andersson, H. Carlsson, “$Q_{p}$ spaces in strictly pseudoconvex domains”, Journal d'Analyse Mathematique, 84 (2001), 335–359

[18] J. Ortega, J. Fabrega, “Pointwise multipliers and corona type decomposition in BMOA”, Ann Inst. Fourier, 46:1 (1996), 111–137

[19] W.S. Cohn, “Weighted Bergman projections and tangential area integrals”, Studia Math., 106:1 (1993), 59–76

[20] E. Ligocka, “On the Forelly-Rudin constructions and weighted Bergman projections”, Studia Math., 94:3 (1989), 257–272

[21] N. Kerzman, E.M. Stein, “The Szego kernel in terms of Cauchy-Fantappie kernels”, Duke Math. J., 45:2 (1978), 197–223

[22] B. Sehba, Operators in some analytic function spaces and their dyadic counterparts, PhD, Dissertation, Glasgow, 2009