Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_4_a0, author = {Ahlam Belfar and Rebiha Benterki}, title = {Centers and limit cycles of generalized {Kukles} polynomial differential systems: phase portraits and limit cycles}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {387--397}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a0/} }
TY - JOUR AU - Ahlam Belfar AU - Rebiha Benterki TI - Centers and limit cycles of generalized Kukles polynomial differential systems: phase portraits and limit cycles JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 387 EP - 397 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a0/ LA - en ID - JSFU_2020_13_4_a0 ER -
%0 Journal Article %A Ahlam Belfar %A Rebiha Benterki %T Centers and limit cycles of generalized Kukles polynomial differential systems: phase portraits and limit cycles %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 387-397 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a0/ %G en %F JSFU_2020_13_4_a0
Ahlam Belfar; Rebiha Benterki. Centers and limit cycles of generalized Kukles polynomial differential systems: phase portraits and limit cycles. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 387-397. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a0/
[1] R. Benterki, J. Llibre, “Centers and limit cycles of polynomial differential systems of degree $4$ via averaging theory”, J. Computational and Appl. Math., 313 (2017), 273–283
[2] R. Benterki, J. Llibre, “The centers and their cyclicity for a class of polynomial differential systems of degree 7 via averaging theory”, J. Computational and Appl. Math., 368 (2020), 112456
[3] C.A. Buzzi, J. Llibre, J.C. Medrado, “Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non–degenerate center at the origin”, Qual. Theory Dyn. Syst., 7 (2009), 369–403
[4] F. Dumortier, J. Llibre, J.C. Artés, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, 2006
[5] J. Giné, “Conditions for the existence of a center for the Kukles homogenenous systems”, Comput. Math. Appl., 43 (2002), 1261–1269
[6] J. Giné, J. LLibre, C. Valls, “Centers for the Kukles homogeneous systems with odd degree”, Bull. London Math. Soc., 47 (2015), 315–324
[7] J. Giné, J. LLibre, C. Valls, “Centers for the Kukles homogeneous systems with even degree”, J. Appl. Anal. Comp., 7 (2017) | DOI
[8] J. Llibre, D.D. Novaes, M.A. Teixeira, Nonlinearity, 27 (2014), 563–583 | DOI
[9] J. Llibre, M.F. da Silva, Int. J. of Bifurcation and Chaos, 26:3 (2016), 1650044 | DOI
[10] J. Llibre, M.F. da Silva, “Global phase portraits of Kukles differential systems with homogenous polynomial nonlinearities of degree $5$ having a center”, Topological Methods in Nonlinear Analysis, 48 (2016), 257–282
[11] K.E. Malkin, “Criteria for the center for a certain differential equation”, Volzhskii Matematicheskii Sbornik, 2 (1964), 87–91 (in Russian)
[12] E.P. Volokitin, V.V. Ivanov, “Isochronicity and Commutation of polynomial vector fields”, Siberian Mathematical Journal, 40 (1999), 23–38
[13] N.I. Vulpe, K.S. Sibirskii, “Centro–affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities”, Soviet Math. Dokl., 38 (1989), 198–201
[14] H. Żoła̧dek, “The classification of reversible cubic systems with center”, Topol. Methods Nonlinear Anal., 4 (1994), 79–136
[15] H. Żoła̧dek, “Remarks on: The classification of reversible cubic systems with center”, Topol. Methods Nonlinear Anal., 8 (1996), 335–342