Colorings of the graph $K^m_2+K_n$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 297-305
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we characterize chromatically unique, determine list-chromatic number and characterize uniquely list colorability of the graph $G=K^m_2+K_n$. We shall prove that $G$ is $\chi $-unique, $\mathrm{ch}(G)=m+n$, $G$ is uniquely $3$-list colorable graph if and only if $2m+n\geqslant 7$ and $m \geqslant 2$.
Keywords:
chromatic number, list-chromatic number, chromatically unique graph, uniquely list colorable graph, complete $r$-partite graph.
@article{JSFU_2020_13_3_a3,
author = {Le Xuan Hung},
title = {Colorings of the graph $K^m_2+K_n$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {297--305},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/}
}
Le Xuan Hung. Colorings of the graph $K^m_2+K_n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 297-305. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/