Colorings of the graph $K^m_2+K_n$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 297-305

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we characterize chromatically unique, determine list-chromatic number and characterize uniquely list colorability of the graph $G=K^m_2+K_n$. We shall prove that $G$ is $\chi $-unique, $\mathrm{ch}(G)=m+n$, $G$ is uniquely $3$-list colorable graph if and only if $2m+n\geqslant 7$ and $m \geqslant 2$.
Keywords: chromatic number, list-chromatic number, chromatically unique graph, uniquely list colorable graph, complete $r$-partite graph.
@article{JSFU_2020_13_3_a3,
     author = {Le Xuan Hung},
     title = {Colorings of the graph $K^m_2+K_n$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {297--305},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/}
}
TY  - JOUR
AU  - Le Xuan Hung
TI  - Colorings of the graph $K^m_2+K_n$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 297
EP  - 305
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/
LA  - en
ID  - JSFU_2020_13_3_a3
ER  - 
%0 Journal Article
%A Le Xuan Hung
%T Colorings of the graph $K^m_2+K_n$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 297-305
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/
%G en
%F JSFU_2020_13_3_a3
Le Xuan Hung. Colorings of the graph $K^m_2+K_n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 297-305. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/