Colorings of the graph $K^m_2+K_n$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 297-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we characterize chromatically unique, determine list-chromatic number and characterize uniquely list colorability of the graph $G=K^m_2+K_n$. We shall prove that $G$ is $\chi $-unique, $\mathrm{ch}(G)=m+n$, $G$ is uniquely $3$-list colorable graph if and only if $2m+n\geqslant 7$ and $m \geqslant 2$.
Keywords: chromatic number, list-chromatic number, chromatically unique graph, uniquely list colorable graph, complete $r$-partite graph.
@article{JSFU_2020_13_3_a3,
     author = {Le Xuan Hung},
     title = {Colorings of the graph $K^m_2+K_n$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {297--305},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/}
}
TY  - JOUR
AU  - Le Xuan Hung
TI  - Colorings of the graph $K^m_2+K_n$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 297
EP  - 305
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/
LA  - en
ID  - JSFU_2020_13_3_a3
ER  - 
%0 Journal Article
%A Le Xuan Hung
%T Colorings of the graph $K^m_2+K_n$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 297-305
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/
%G en
%F JSFU_2020_13_3_a3
Le Xuan Hung. Colorings of the graph $K^m_2+K_n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 297-305. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a3/

[1] M. Behzad, G. Chartrand, Introduction to the theory of graphs, Allyn and Bacon, Boston, 1971 | MR | Zbl

[2] M. Behzad, G. Chartrand, J. Cooper, “The coloring numbers of complete graphs”, J. London Math. Soc., 42 (1967), 226–228 | DOI | MR | Zbl

[3] G.D. Birkhoff, “A determinant formula for the number of ways of coloring a map”, Annals of Math., 14:2 (1912), 42–46 | DOI | MR | Zbl

[4] C.Y. Chao, E.G. Whitehead Jr., “On chromatic equivalence of graphs”, Theory and Applications of Graphs, LNM, 642, 1978, 121–131 | MR | Zbl

[5] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000 | MR

[6] J.H. Dinitz, W.J. Martin, “The stipulation polynomial of a uniquely list colorable graph”, Austran. J. Combin., 11 (1995), 105–115 | MR | Zbl

[7] Le Xuan Hung, “List colorings of split graphs”, Journal of Science and Technology (JST-UD), 2016, no. 9(106), 78–80 | MR

[8] K.M. Koh, K.L. Teo, “The search for chromatically unique graphs”, Graphs Combin., 6 (1990), 259–285 | DOI | MR | Zbl

[9] K.M. Koh, K.L. Teo, “The search for chromatically unique graphs II”, Discrete Math., 172 (1997), 59–78 | DOI | MR | Zbl

[10] M. Mahdian, E.S. Mahmoodian, “A characterization of uniquely 2-list colorable graphs”, Ars Combin., 51 (1999), 295–305 | MR | Zbl

[11] R.C. Read, “An introduction to chromatic polynomials”, J. Combin. Theory, 4 (1968), 52–71 | DOI | MR

[12] Ngo Dac Tan, Le Xuan Hung, “On colorings of split graphs”, Acta Mathematica Vietnammica, 31:3 (2006), 195–204 | MR | Zbl

[13] W. Wang, X. Liu, “List-coloring based channel allocation for open-spectrum wireless networks”, Proceedings of the IEEE International Conference on Vehicular Technology, VTC'05, 2005, 690–694