Global in time results for a parabolic equation solution in non-rectangular domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 257-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with the parabolic equation $$ \partial _{t}w-c(t)\partial_{x}^{2} w=f \text{in} D, D=\left\{(t,x)\in\mathbb{R}^{2}:t>0, \varphi_{1} \left( t\right)\varphi_{2}(t)\right\} $$ with $\varphi_{i}: [0,+\infty[\rightarrow \mathbb{R}, i=1, 2$ and $c: [0,+\infty[\rightarrow \mathbb{R}$ satisfying some conditions and the problem is supplemented with boundary conditions of Dirichlet-Robin type. We study the global regularity problem in a suitable parabolic Sobolev space. We prove in particular that for $f\in L^{2}(D)$ there exists a unique solution $w$ such that $w, \partial _{t}w, \partial ^{j}w\in L^{2}(D), j=1, 2.$ Notice that the case of bounded non-rectangular domains is studied in [9]. The proof is based on energy estimates after transforming the problem in a strip region combined with some interpolation inequality. This work complements the results obtained in [Sad2] in the case of Cauchy-Dirichlet boundary conditions.
Keywords: heat equation, unbounded domains
Mots-clés : parabolic equations, non-rectangular domains, anisotropic Sobolev spaces.
@article{JSFU_2020_13_3_a0,
     author = {Louanas Bouzidi and Arezki Kheloufi},
     title = {Global in time results for a parabolic equation solution in non-rectangular domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {257--274},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/}
}
TY  - JOUR
AU  - Louanas Bouzidi
AU  - Arezki Kheloufi
TI  - Global in time results for a parabolic equation solution in non-rectangular domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 257
EP  - 274
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/
LA  - en
ID  - JSFU_2020_13_3_a0
ER  - 
%0 Journal Article
%A Louanas Bouzidi
%A Arezki Kheloufi
%T Global in time results for a parabolic equation solution in non-rectangular domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 257-274
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/
%G en
%F JSFU_2020_13_3_a0
Louanas Bouzidi; Arezki Kheloufi. Global in time results for a parabolic equation solution in non-rectangular domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 257-274. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/

[1] Yu.A. Alkhutov, I.T. Mamedov, “The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients”, Mathematics of the USSR-Sbornik, 59:2 (1988), 471–495 | DOI | MR | Zbl

[2] Yu.A. Alkhutov, J. Math. Sci. (N. Y.), 142:3 (2007), 2021–2032 | DOI | MR | Zbl

[3] V.N. Aref'ev, L.A. Bagirov, Math. Notes, 64:1–2 (1998), 139–153 | DOI | MR | Zbl

[4] T. Boudjeriou, A. Kheloufi, J. Sib. Fed. Univ. Math. Phys., 12:3 (2019), 355–370 | DOI | MR

[5] S.P. Degtyarev, Sbornik: Mathematics, 201:7 (2010), 999–1028 | DOI | MR | Zbl

[6] S. Guesmia, Arch. Math., 101 (2013), 293–299 | DOI | Zbl

[7] S. Hofmann, J.L. Lewis, “The $L^p$ Neumann problem for the heat equation in non-cylindrical domains”, J. Funct. Anal., 220:1 (2005), 1–54 | DOI | MR | Zbl

[8] A. Kheloufi, B.K. Sadallah, “Study of a parabolic equation with mixed Dirichlet-Neumann type boundary conditions in unbounded noncylindrical domains”, Journal of Advanced Research in Applied Mathematics, 7:4 (2015), 62–77 | MR

[9] A. Kheloufi, “On parabolic equations with mixed Dirichlet-Robin type boundary conditions in a non-rectangular domain”, Mediterr. J. Math., 13 (2016), 1787–1805 | DOI | MR | Zbl

[10] V.A. Kondrat'ev, Boundary problems for parabolic equations in closed regions, Am. Math. Soc., Providence, RI, 1966, 450–504 | Zbl

[11] V.A. Kozlov, V.G. Maz'ya, “On singularities of a solution to the first boundary value problem for the heat equation in domains with conical points, I”, Soviet Math. (Iz. VUZ), 31:2 (1987), 61–74 | MR | Zbl

[12] V.A. Kozlov, V.G. Maz'ya, “Singularities of solutions of the first boundary value problem for the heat equation in domains with conical points. II”, Soviet Math. (Iz. VUZ), 31:3 (1987), 61–74 | MR | Zbl

[13] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968 (Russian) | DOI | MR

[14] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, 2, Dunod, Paris, 1968 | MR | Zbl

[15] F. Paronetto, “An existence result for evolution equations in non-cylindrical domains”, Nonlinear Differ. Equ. Appl., 20 (2013), 1723–1740 | DOI | MR | Zbl

[16] A.I. Nazarov, J. of Math. Sci., 106:3 (2001), 2989–3014 | DOI | MR

[17] M.A. Ragusa, “Cauchy-Dirichlet problem associated to divergence form parabolic equations”, Communications in Contemporary Mathematics, 6:3 (2004), 377–393 | DOI | MR | Zbl

[18] B.-K. Sadallah, “Etude d'un problème $2m-$parabolique dans des domaines plan non rectangulaires”, Boll. Un. Mat. Ital., 2-B:5 (1983), 51–112 | MR | Zbl

[19] B.K. Sadallah, “Regularity of a parabolic equation solution in a non-smooth and unbounded domain”, J. Aust. Math. Soc., 84:2 (2008), 265–276 | DOI | MR | Zbl