Global in time results for a parabolic equation solution in non-rectangular domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 257-274

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with the parabolic equation $$ \partial _{t}w-c(t)\partial_{x}^{2} w=f \text{in} D, D=\left\{(t,x)\in\mathbb{R}^{2}:t>0, \varphi_{1} \left( t\right)\varphi_{2}(t)\right\} $$ with $\varphi_{i}: [0,+\infty[\rightarrow \mathbb{R}, i=1, 2$ and $c: [0,+\infty[\rightarrow \mathbb{R}$ satisfying some conditions and the problem is supplemented with boundary conditions of Dirichlet-Robin type. We study the global regularity problem in a suitable parabolic Sobolev space. We prove in particular that for $f\in L^{2}(D)$ there exists a unique solution $w$ such that $w, \partial _{t}w, \partial ^{j}w\in L^{2}(D), j=1, 2.$ Notice that the case of bounded non-rectangular domains is studied in [9]. The proof is based on energy estimates after transforming the problem in a strip region combined with some interpolation inequality. This work complements the results obtained in [Sad2] in the case of Cauchy-Dirichlet boundary conditions.
Keywords: heat equation, unbounded domains
Mots-clés : parabolic equations, non-rectangular domains, anisotropic Sobolev spaces.
@article{JSFU_2020_13_3_a0,
     author = {Louanas Bouzidi and Arezki Kheloufi},
     title = {Global in time results for a parabolic equation solution in non-rectangular domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {257--274},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/}
}
TY  - JOUR
AU  - Louanas Bouzidi
AU  - Arezki Kheloufi
TI  - Global in time results for a parabolic equation solution in non-rectangular domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 257
EP  - 274
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/
LA  - en
ID  - JSFU_2020_13_3_a0
ER  - 
%0 Journal Article
%A Louanas Bouzidi
%A Arezki Kheloufi
%T Global in time results for a parabolic equation solution in non-rectangular domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 257-274
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/
%G en
%F JSFU_2020_13_3_a0
Louanas Bouzidi; Arezki Kheloufi. Global in time results for a parabolic equation solution in non-rectangular domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 257-274. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a0/