Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_2_a10, author = {Mikhail V. Rybkov and Lyudmila V. Knaub and Danil V. Khorov}, title = {First-order methods with extended stability regions for solving electric circuit problems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {242--252}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/} }
TY - JOUR AU - Mikhail V. Rybkov AU - Lyudmila V. Knaub AU - Danil V. Khorov TI - First-order methods with extended stability regions for solving electric circuit problems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 242 EP - 252 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/ LA - en ID - JSFU_2020_13_2_a10 ER -
%0 Journal Article %A Mikhail V. Rybkov %A Lyudmila V. Knaub %A Danil V. Khorov %T First-order methods with extended stability regions for solving electric circuit problems %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 242-252 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/ %G en %F JSFU_2020_13_2_a10
Mikhail V. Rybkov; Lyudmila V. Knaub; Danil V. Khorov. First-order methods with extended stability regions for solving electric circuit problems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 242-252. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/
[1] E.Hairer, G.Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer, Berlin, 1996 | MR | Zbl
[2] E.A.Novikov, Explicit methods for stiff systems, Nauka, Novosibirsk, 1997 (in Russian) | MR | Zbl
[3] E.A.Novikov, A.E.Novikov, “Explicit-Implicit Variable Structure Algorithm for Solving Stiff Systems”, International Journal of Mathematical Models and Methods in Applied Sciences, 9:1 (2015), 62–70 | MR
[4] E.A.Novikov, Yu.V.Shornikov, Computer simulation of stiff hybrid systems, Publisher of NSTU, Novosibirsk, 2012 (in Russian)
[5] A.E.Novikov, E.A.Novikov, “L-stable (2,1)-method for stiff nonautonomius problem solving”, Computing technologies, 13 (2008), 477–482 (in Russian) | MR
[6] E.A.Novikov, Yu.A.Shitov, Integration algorithm for stiff systems based on a second-order accuracy (m, k)-method with numerical calculation of the Jacobi matrix, Preprint of the Exhibition Center of the Siberian Branch of the USSR Academy of Sciences No 20, Krasnoyarsk, 1988 (in Russian) | MR
[7] E.A.Novikov, M.V.Rybkov, “The numerical algorithm of constructing stability polynomials of first order methods”, Bulletin of the Buryat State University, 2014, no. 9-2, 80–85 (in Russian)
[8] E.A.Novikov, M.V.Rybkov, “The numerical algorithm of constructing of stability regions for explicit methods”, Control systems and information technologies, 55:1.1 (2014), 173–177 (in Russian)
[9] Yozo Hida, Xiaoye S Li, David H Bailey, Quad-double arithmetic: algorithms, implementation, and application, Technical Report LBNL-46996, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, 2000
[10] L.V.Knaub, P.S.Litvinov, A.E.Novikov, M.V.Rybkov, “Solving Problems of Moderate Stiffness Using Methods of the First Order with Conformed Stability Domains”, University Scientific Journal, 22 (2016), 49–58
[11] R.H.Merson, “An operational methods for integration processes”, Proc. of Symp. on Data Processing, Weapons Research Establishment, Salisbury, Australia, 1957