First-order methods with extended stability regions for solving electric circuit problems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 242-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability control of Runge-Kutta numerical schemes is studied to increase efficiency of integrating stiff problems. The implementation of the algorithm to determine coefficients of stability polynomials with the use of the GMP library is presented. Shape and size of the stability region of a method can be preassigned using proposed algorithm. Sets of first-order methods with extended stability domains are built. The results of electrical circuits simulation show the increase of the efficiency of the constructed first-order methods in comparison with methods of higher order.
Keywords: stiff problem, explicit methods, stability region, accuracy and stability control.
@article{JSFU_2020_13_2_a10,
     author = {Mikhail V. Rybkov and Lyudmila V. Knaub and Danil V. Khorov},
     title = {First-order methods with extended stability regions for solving electric circuit problems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {242--252},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/}
}
TY  - JOUR
AU  - Mikhail V. Rybkov
AU  - Lyudmila V. Knaub
AU  - Danil V. Khorov
TI  - First-order methods with extended stability regions for solving electric circuit problems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 242
EP  - 252
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/
LA  - en
ID  - JSFU_2020_13_2_a10
ER  - 
%0 Journal Article
%A Mikhail V. Rybkov
%A Lyudmila V. Knaub
%A Danil V. Khorov
%T First-order methods with extended stability regions for solving electric circuit problems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 242-252
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/
%G en
%F JSFU_2020_13_2_a10
Mikhail V. Rybkov; Lyudmila V. Knaub; Danil V. Khorov. First-order methods with extended stability regions for solving electric circuit problems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 242-252. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a10/

[1] E.Hairer, G.Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer, Berlin, 1996 | MR | Zbl

[2] E.A.Novikov, Explicit methods for stiff systems, Nauka, Novosibirsk, 1997 (in Russian) | MR | Zbl

[3] E.A.Novikov, A.E.Novikov, “Explicit-Implicit Variable Structure Algorithm for Solving Stiff Systems”, International Journal of Mathematical Models and Methods in Applied Sciences, 9:1 (2015), 62–70 | MR

[4] E.A.Novikov, Yu.V.Shornikov, Computer simulation of stiff hybrid systems, Publisher of NSTU, Novosibirsk, 2012 (in Russian)

[5] A.E.Novikov, E.A.Novikov, “L-stable (2,1)-method for stiff nonautonomius problem solving”, Computing technologies, 13 (2008), 477–482 (in Russian) | MR

[6] E.A.Novikov, Yu.A.Shitov, Integration algorithm for stiff systems based on a second-order accuracy (m, k)-method with numerical calculation of the Jacobi matrix, Preprint of the Exhibition Center of the Siberian Branch of the USSR Academy of Sciences No 20, Krasnoyarsk, 1988 (in Russian) | MR

[7] E.A.Novikov, M.V.Rybkov, “The numerical algorithm of constructing stability polynomials of first order methods”, Bulletin of the Buryat State University, 2014, no. 9-2, 80–85 (in Russian)

[8] E.A.Novikov, M.V.Rybkov, “The numerical algorithm of constructing of stability regions for explicit methods”, Control systems and information technologies, 55:1.1 (2014), 173–177 (in Russian)

[9] Yozo Hida, Xiaoye S Li, David H Bailey, Quad-double arithmetic: algorithms, implementation, and application, Technical Report LBNL-46996, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, 2000

[10] L.V.Knaub, P.S.Litvinov, A.E.Novikov, M.V.Rybkov, “Solving Problems of Moderate Stiffness Using Methods of the First Order with Conformed Stability Domains”, University Scientific Journal, 22 (2016), 49–58

[11] R.H.Merson, “An operational methods for integration processes”, Proc. of Symp. on Data Processing, Weapons Research Establishment, Salisbury, Australia, 1957