Application of DMA 242 C for quasi-static measurements of piezoelectric properties of solids
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 97-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

An experimental device for quasi-static measurements of piezoelectric moduli $d_{ijk}$, based on the possibilities of precision variations in mechanical stresses with the device DMA 242 C in the frequency range 0–100 Hz has been developed. A special sample holder and a charge amplifier are used in the measuring scheme. The measurements of piezoelectric moduli values of trigonal piezoelectric single crystalls La$_3$Ga$_5$SiO$_{14}$ (P321) and YAl$_3$(BO$_3$)$_4$ (R32), as well as hexagonal ZnO (P6$_3$mc) have been carried out.
Keywords: piezoelectric modules, quasistatic method, multiferroics.
@article{JSFU_2020_13_1_a8,
     author = {Pavel P. Turchin and Vladimir I. Turchin and Sergey V. Yurkevich and Pavel O. Sukhodaev and Irina S. Raikova},
     title = {Application of {DMA} 242 {C} for quasi-static measurements of piezoelectric properties of solids},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {97--103},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a8/}
}
TY  - JOUR
AU  - Pavel P. Turchin
AU  - Vladimir I. Turchin
AU  - Sergey V. Yurkevich
AU  - Pavel O. Sukhodaev
AU  - Irina S. Raikova
TI  - Application of DMA 242 C for quasi-static measurements of piezoelectric properties of solids
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 97
EP  - 103
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a8/
LA  - en
ID  - JSFU_2020_13_1_a8
ER  - 
%0 Journal Article
%A Pavel P. Turchin
%A Vladimir I. Turchin
%A Sergey V. Yurkevich
%A Pavel O. Sukhodaev
%A Irina S. Raikova
%T Application of DMA 242 C for quasi-static measurements of piezoelectric properties of solids
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 97-103
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a8/
%G en
%F JSFU_2020_13_1_a8
Pavel P. Turchin; Vladimir I. Turchin; Sergey V. Yurkevich; Pavel O. Sukhodaev; Irina S. Raikova. Application of DMA 242 C for quasi-static measurements of piezoelectric properties of solids. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 97-103. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a8/

[1] W. Cady, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, Foreign Literature Publishing House, M., 1949 (in Russian)

[2] W. Mason, Physical Acoustics, v. 1, Ultrasonic Instruments and Devices, Mir, M., 1966 (in Russian) | MR

[3] A.V. Shubnikov, Piezoelectric Textures, Publishing House of the Academy of Sciences of the USSR, M.–L., 1946 (in Russian)

[4] R. Truell, Ultrasonic Methods in Solid State Physics, Mir, M., 1972 (in Russian)

[5] K.S. Aleksandrov, B.P. Sorokin, P.P. Turchin, D.A. Glushkov, Ferroelectrics Letters, 14:5–6 (1992), 115–126 | DOI

[6] V.A. Golovin, I.A. Kaplunov, O.V. Malyshkina, B.B. Ped'ko, A.A. Movchikova, Physical Bases, Research Methods and Practical Application of Piezomaterials, Tekhnosphera, M., 2013 (in Russian)

[7] M.V. Bogush, Designing Piezoelectric Sensors Based On Spatial Electrothermoelastic Models, Tekhnosphera, M., 2014 (in Russian)

[8] K.S. Aleksandrov et al., Physics of the Solid State, 45:1 (2003), 41–45 | DOI

[9] A.L. Freidman, S.I. Popkov, S.V. Semenov, P.P. Turchin, Technical Physics Letters, 44:2 (2018), 123–125 | DOI

[10] S.V. Bogdanov, Acoustic Journal, 43:3 (1997), 304–309

[11] S.V. Bogdanov, Acoustic Journal, 46:5 (2000), 530–533 | DOI

[12] K.S. Aleksandrov, B.P. Sorokin, S.I. Burkov, Effective Piezoelectric Crystals for Acoustic Electronics, v. 1, Piezoelectric Devices and Sensors, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2007

[13] A.P. Pyatakov, A.K. Zvezdin, Physics-Uspekhi, 55:6 (2012), 557–580 | DOI

[14] Dynamic-Mechanical Analysis – DMA 242C, http://photos.labwrench.com/equipmentManuals/7511-2751.pdf

[15] S. Adachi, Handbook on Physical Properties of Semiconductors, v. 3, II–VI Compound Semiconductors, Springer Science $\$ Business Media, 2004

[16] L. Zheng et al., “>1 MW Peak Power at 266 nm in Nonlinear YAl$_3$(BO$_3$)$_4$ (YAB) Single Crystal”, Lasers and Electro-Optics (CLEO), 2015 Conference on. IEEE, 2015

[17] J. Nye, Physical Properties of Crystals Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1964 | MR

[18] Yu.I. Sirotin, M.P. Shaskol'skaya, Principles of Crystal Physics, Nauka, M., 1975 (in Russian)

[19] I.B. Kobyakov, Solid State Communications, 35:3 (1980), 305–310 | DOI

[20] D.F. Crisler, J.J. Cupal, A.R. Moore, “Dielectric, Piezoelectric, and Electromechanical Coupling Constants of Zinc Oxide Crystals”, Proc. IEEE, 56:2 (1968), 225–226 | DOI

[21] H. Jaffe, D.A. Berlincourt, “Piezoelectric Transducer Materials”, Proc. IEEE, 53:10 (1965), 1372–1386 | DOI

[22] M. Catti, Y. Noel, R. Dovesi, Journal of Physics and Chemistry of Solids, 64:11 (2003), 2183–2190 | DOI

[23] A.A. Kaminskii, I.M. Silvestrova, S.E. Sarkisov, G.A. Denisenko, Phys. Stat. Solidi (a), 80:2 (1983), 607–620 | DOI

[24] J. Stade, L. Bohatỹ, M. Hengst, R.B. Heimann, Cryst. Res. Technol., 37:10 (2002), 1113–1120 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[25] S. Zhang et al., Journal of Applied Physics, 105:11 (2009), 114107 | DOI

[26] I.A. Andreev, Single Crystals with Moderate and Strong Electromechanical Coupling for Acoustic Electronics and Acousto-Optics, Abstract of diss. Doct. Phys.-Math. sciences, Sciences (04.01.07), M., St. Petersburg, 2007