Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 58-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is the description of Berry's phase, in the Euclidean Path Integral formalism, for 2D quadratic system: two time dependent coupled harmonic oscillators. This treatment is achieved by using the adiabatic approximation in the commutative and noncommutative phase space.
Keywords: Berry's phase, noncommutative phase space, coupled oscillators.
@article{JSFU_2020_13_1_a4,
     author = {Leila Khiari and Tahar Boudjedaa and Abdenacer Makhlouf and Mohammed Tayeb Meftah},
     title = {Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {58--70},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/}
}
TY  - JOUR
AU  - Leila Khiari
AU  - Tahar Boudjedaa
AU  - Abdenacer Makhlouf
AU  - Mohammed Tayeb Meftah
TI  - Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 58
EP  - 70
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/
LA  - en
ID  - JSFU_2020_13_1_a4
ER  - 
%0 Journal Article
%A Leila Khiari
%A Tahar Boudjedaa
%A Abdenacer Makhlouf
%A Mohammed Tayeb Meftah
%T Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 58-70
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/
%G en
%F JSFU_2020_13_1_a4
Leila Khiari; Tahar Boudjedaa; Abdenacer Makhlouf; Mohammed Tayeb Meftah. Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 58-70. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/

[1] C.S. Acatrinei, J. Phys. A: Math. Gen., 37 (2004), 1225–1230 | DOI | MR | Zbl

[2] C.S. Acatrinei, J. Phys. A: Math. Theor., 40:2007, F929–F933 | MR | Zbl

[3] B. Dragovish, Z. Rakic, Path Integral Approach to Noncommutative Quantum Mechanics, 2004, arXiv: hep-th/0401198v1 | MR

[4] M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys., 73 (2001), 977, arXiv: hep-th/0106048v4 | DOI | MR | Zbl

[5] M. Chaichian, A. Demichev, P. Presnajder, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Lett. B, 527 (2002), 149–154 | DOI | MR | Zbl

[6] C. Duval, P. Horvathy, Phys. Lett. B, 479 (2000), 284 ; C. Duval, P. Horvathy, J. Phys. A, 34 (2001), 10097 ; P. Horvathy, Ann. Phys., 299 (2002), 128 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[7] L. Gouba, A comparative review of four formulations of noncommutative quantum mechanics, 2016, arXiv: hep-th/1603.07176v2

[8] A. Connes, M.R. Douglas, A. Schwarz, JHEP, 1998 | DOI

[9] M. Dubois-Violette, “Noncommutative differential geometry, quantum mechanics and gauge Theory”, 19th International Conference on Differential-geometric Methods in Theoretical Physics (Rapallo, Italy), Lecture Notes in Physics, 375, eds. C. Bartocci, U. Bruzzo, R. Cianci, 1990, 13–24 | DOI | MR

[10] V.P. Nair, A.P. Polychronakos, Phys. Lett. B, 505:2001, 267 | DOI | MR | Zbl

[11] A. Connes, Noncommutative Geometry, Academic Press, London, 1994 | MR | Zbl

[12] J. Bros, “The Geometry of Relativistic Spacetime: from Euclid's Geometry to Minkowski's Spacetime”, Séminaire Poincaré, 2005, 1–45 | MR

[13] A. Smailagic, E. Spallucci, Journal of Physics A, 36:33 (2003), L467–L471 | DOI | MR | Zbl

[14] M.V. Berry, Proc. R. Soc. Lond. A, 392 (1984), 45–57 | DOI | MR | Zbl

[15] A. Shapere, F. Wilczek, Geometric phase in quantum Theory, Advanced Series In Mathematical Physics, 5, World Scientific, 1989 | MR

[16] T. Pacher, C.A. Mead, L.S. Cederbaum, H. Koppel, J. Chem. Phys., 91 (1989), 7057 | DOI

[17] A. Messiah, Quantum Mechanics, ch. XVII, § 13, v. II, Wiley and Sons, New-York, 1958 | MR

[18] T. Kashiwa, S. Nima, S. Sakoda, Vistas in Astronomy, 37 (1993), 279–282 | DOI | MR

[19] D.C. Khandekar, S.V. Lawande, K.V. Bhagwat, J. Phys. A, 16 (1983), 4209 | DOI | MR

[20] B. Dragovish et al., Proc. Steklov Inst. Math., 265, 2009, 82–91 | DOI

[21] C. Grosche, F. Steiner, Handbook of Feynman Path Integral, Springer tracts in modern physics, 145 | MR

[22] J. Jing, You Cui, Zheng-Wen Long, Eur. Phys. J. C, 67 (2010), 583–588 | DOI

[23] F. Benamira, L. Guechi, Czechoslovak Journal of Physics, 53:9 (2003), 717–725 | DOI

[24] S. Menouar, M. Maamache, J. Ryeol Choi, Annals of Physics, 325 (2010), 1708–1719 | DOI | MR | Zbl

[25] S. Zhang, J.R. Choi, C.I. Um, K.H. Yeon, Phys. Lett. A, 2002, 294–319 | MR | Zbl