Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_1_a4, author = {Leila Khiari and Tahar Boudjedaa and Abdenacer Makhlouf and Mohammed Tayeb Meftah}, title = {Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {58--70}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/} }
TY - JOUR AU - Leila Khiari AU - Tahar Boudjedaa AU - Abdenacer Makhlouf AU - Mohammed Tayeb Meftah TI - Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 58 EP - 70 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/ LA - en ID - JSFU_2020_13_1_a4 ER -
%0 Journal Article %A Leila Khiari %A Tahar Boudjedaa %A Abdenacer Makhlouf %A Mohammed Tayeb Meftah %T Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 58-70 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/ %G en %F JSFU_2020_13_1_a4
Leila Khiari; Tahar Boudjedaa; Abdenacer Makhlouf; Mohammed Tayeb Meftah. Berry phase for time-dependent coupled harmonic oscillators in the noncommutative phase space via path integral techniques. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 58-70. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a4/
[1] C.S. Acatrinei, J. Phys. A: Math. Gen., 37 (2004), 1225–1230 | DOI | MR | Zbl
[2] C.S. Acatrinei, J. Phys. A: Math. Theor., 40:2007, F929–F933 | MR | Zbl
[3] B. Dragovish, Z. Rakic, Path Integral Approach to Noncommutative Quantum Mechanics, 2004, arXiv: hep-th/0401198v1 | MR
[4] M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys., 73 (2001), 977, arXiv: hep-th/0106048v4 | DOI | MR | Zbl
[5] M. Chaichian, A. Demichev, P. Presnajder, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Lett. B, 527 (2002), 149–154 | DOI | MR | Zbl
[6] C. Duval, P. Horvathy, Phys. Lett. B, 479 (2000), 284 ; C. Duval, P. Horvathy, J. Phys. A, 34 (2001), 10097 ; P. Horvathy, Ann. Phys., 299 (2002), 128 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[7] L. Gouba, A comparative review of four formulations of noncommutative quantum mechanics, 2016, arXiv: hep-th/1603.07176v2
[8] A. Connes, M.R. Douglas, A. Schwarz, JHEP, 1998 | DOI
[9] M. Dubois-Violette, “Noncommutative differential geometry, quantum mechanics and gauge Theory”, 19th International Conference on Differential-geometric Methods in Theoretical Physics (Rapallo, Italy), Lecture Notes in Physics, 375, eds. C. Bartocci, U. Bruzzo, R. Cianci, 1990, 13–24 | DOI | MR
[10] V.P. Nair, A.P. Polychronakos, Phys. Lett. B, 505:2001, 267 | DOI | MR | Zbl
[11] A. Connes, Noncommutative Geometry, Academic Press, London, 1994 | MR | Zbl
[12] J. Bros, “The Geometry of Relativistic Spacetime: from Euclid's Geometry to Minkowski's Spacetime”, Séminaire Poincaré, 2005, 1–45 | MR
[13] A. Smailagic, E. Spallucci, Journal of Physics A, 36:33 (2003), L467–L471 | DOI | MR | Zbl
[14] M.V. Berry, Proc. R. Soc. Lond. A, 392 (1984), 45–57 | DOI | MR | Zbl
[15] A. Shapere, F. Wilczek, Geometric phase in quantum Theory, Advanced Series In Mathematical Physics, 5, World Scientific, 1989 | MR
[16] T. Pacher, C.A. Mead, L.S. Cederbaum, H. Koppel, J. Chem. Phys., 91 (1989), 7057 | DOI
[17] A. Messiah, Quantum Mechanics, ch. XVII, § 13, v. II, Wiley and Sons, New-York, 1958 | MR
[18] T. Kashiwa, S. Nima, S. Sakoda, Vistas in Astronomy, 37 (1993), 279–282 | DOI | MR
[19] D.C. Khandekar, S.V. Lawande, K.V. Bhagwat, J. Phys. A, 16 (1983), 4209 | DOI | MR
[20] B. Dragovish et al., Proc. Steklov Inst. Math., 265, 2009, 82–91 | DOI
[21] C. Grosche, F. Steiner, Handbook of Feynman Path Integral, Springer tracts in modern physics, 145 | MR
[22] J. Jing, You Cui, Zheng-Wen Long, Eur. Phys. J. C, 67 (2010), 583–588 | DOI
[23] F. Benamira, L. Guechi, Czechoslovak Journal of Physics, 53:9 (2003), 717–725 | DOI
[24] S. Menouar, M. Maamache, J. Ryeol Choi, Annals of Physics, 325 (2010), 1708–1719 | DOI | MR | Zbl
[25] S. Zhang, J.R. Choi, C.I. Um, K.H. Yeon, Phys. Lett. A, 2002, 294–319 | MR | Zbl