Elementary nets (carpets) over a discrete valuation ring
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 728-735.

Voir la notice de l'article provenant de la source Math-Net.Ru

Elementary net (carpet) $\sigma = (\sigma_{ij})$ is called closed (admissible) if the elementary net (carpet) group $E(\sigma)$ does not contain a new elementary transvections. The work is related to the question of V. M. Levchuk 15.46 from the Kourovka notebook( closedness (admissibility) of the elementary net (carpet)over a field). Let $R$ be a discrete valuation ring, $K$ be the field of fractions of $R$, $\sigma = (\sigma_{ij})$ be an elementary net of order $n$ over $R$, $\omega=(\omega_{ij})$ be a derivative net for $\sigma$, and $\omega_{ij}$ is ideals of the ring $R$. It is proved that if $K$ is a field of odd characteristic, then for the closedness (admissibility) of the net $\sigma$, the closedness (admissibility) of each pair $(\sigma_{ij}, \sigma_{ji})$ is sufficient for all $i\neq j$.
Keywords: nets, carpets, elementary net, closed net, derivative net, elementary net group, discrete valuation ring.
Mots-clés : transvections
@article{JSFU_2019_12_6_a8,
     author = {Vladimir A. Koibaev},
     title = {Elementary nets (carpets) over a discrete valuation ring},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {728--735},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a8/}
}
TY  - JOUR
AU  - Vladimir A. Koibaev
TI  - Elementary nets (carpets) over a discrete valuation ring
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 728
EP  - 735
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a8/
LA  - en
ID  - JSFU_2019_12_6_a8
ER  - 
%0 Journal Article
%A Vladimir A. Koibaev
%T Elementary nets (carpets) over a discrete valuation ring
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 728-735
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a8/
%G en
%F JSFU_2019_12_6_a8
Vladimir A. Koibaev. Elementary nets (carpets) over a discrete valuation ring. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 728-735. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a8/

[1] The Kourovka notebook: unsolved problems in group theory, 17, Russ. acad. of sciences, Siberian div., Inst. of mathematics, Novosibirsk, 2010 (in Russian)

[2] V.M. Levchuk, “Generating sets of root elements of Chevalley groups over a field”, Algebra and Logic, 22:5 (1983), 504–517 | DOI | MR | Zbl

[3] R.Y. Dryaeva, V.A. Koibaev, Ya.N. Nuzhin, “Full and elementary nets over the field of fractions of a principal ideal ring”, Journal of Mathematical Sciences, 234:2 (2018), 141–147 | DOI | MR | Zbl

[4] M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969 | MR | Zbl

[5] Z.I. Borevich, “Subgroups of linear groups rich in transvections”, Journal of Soviet Mathematics, 37:2 (1987), 928–934 | DOI | Zbl

[6] V.M. Levchuk, “A Note to L. Dickson's Theorem”, Algebra and Logic, 22:4 (1983), 421–434 | DOI | MR | Zbl

[7] N.A. Dzhusoeva, S.Y. Itarova, V.A. Koibaev, “On the embedding an elementary net into a gap of nets”, XVI International Conference Algebra, Number Theory and Discrete Geometry: modern problems, applications and problems of history, Abstracts (Tula), 73–74

[8] R.Y. Dryaeva, V.A. Koibaev, “Decomposition of elementary transvection in elementary group”, Journal of Mathematical Sciences, 219:4 (2016), 513–518 | DOI | MR | Zbl

[9] S.Y. Itarova, V.A. Koibaev, “Decomposition of elementary transvection in elementary net group”, Vladikavkaz. Mat. Zh., 21:3 (2019) | MR

[10] V.A. Koibaev, “Elementary nets in linear groups”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, no. 4, 2011, 134–141 | MR