Elementary nets (carpets) over a discrete valuation ring
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 728-735
Voir la notice de l'article provenant de la source Math-Net.Ru
Elementary net (carpet) $\sigma = (\sigma_{ij})$ is called closed (admissible) if the elementary net (carpet) group $E(\sigma)$ does not contain a new elementary transvections. The work is related to the question of V. M. Levchuk 15.46 from the Kourovka notebook( closedness (admissibility) of the elementary net (carpet)over a field). Let $R$ be a discrete valuation ring, $K$ be the field of fractions of $R$, $\sigma = (\sigma_{ij})$ be an elementary net of order $n$ over $R$, $\omega=(\omega_{ij})$ be a derivative net for $\sigma$, and $\omega_{ij}$ is ideals of the ring $R$. It is proved that if $K$ is a field of odd characteristic, then for the closedness (admissibility) of the net $\sigma$, the closedness (admissibility) of each pair $(\sigma_{ij}, \sigma_{ji})$ is sufficient for all $i\neq j$.
Keywords:
nets, carpets, elementary net, closed net, derivative net, elementary net group, discrete valuation ring.
Mots-clés : transvections
Mots-clés : transvections
@article{JSFU_2019_12_6_a8,
author = {Vladimir A. Koibaev},
title = {Elementary nets (carpets) over a discrete valuation ring},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {728--735},
publisher = {mathdoc},
volume = {12},
number = {6},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a8/}
}
TY - JOUR AU - Vladimir A. Koibaev TI - Elementary nets (carpets) over a discrete valuation ring JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 728 EP - 735 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a8/ LA - en ID - JSFU_2019_12_6_a8 ER -
Vladimir A. Koibaev. Elementary nets (carpets) over a discrete valuation ring. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 728-735. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a8/